Prerequisits

• Go through the <u>system setup</u> procedure for the DBBC3 and verify that the system is in a working condition.

System initialization

Additional information can be found also on the EHT-wiki

Module initialization

ONLY IF REQUIRED: Initialise the modules using the following command. It has to be repeated separately for each Mark6 that has modules that need initialising (example below references the Mark6 using hostname 'recorder1').

This command will erase all existing data on the modules.

If you are unsure whether to initialise a set of modules, request guidance from AOC.

backendctl mark6 recorder1 modules 1,2,3,4 init-fresh

if the modules are still in "open" state they must be unmounted before

backendctl mark6 recorder1 group unmount

Repeat for all recorders

Initialize, configure & validate the DBBC3 Load the OCT_D firmware

On the DBBC3 desktop

- close any other running control software programs
- close the DBBC3 client program
- double click the icon labeled "DBBC3 Control OCT_D_v120.exe"
- answer first question with "y" in order to do a full reload of the firmware.
- wait until the control software has fully loaded and responds with "Waiting for connection on port 4000"

Setup the system

Verify that the setup for using 2GHz filters is activated:

- Inspect c:\DBBC_CONF\OCT_D_120\dbbc3_config_file_oct_D_120.txt
- Check that the 2GHz version of the fila10g files is being referenced, e.g.
 oct_D_2GHz_core3H_1.fila10g. If you find a reference to e.g. 1GHz setups you need to change the setup by following the instructions in the README file located in the c:\DBBC_CONF\OCT_D_120\ folder. In case

Note: the target setup for the DBBC3 is defined in /etc/backend.conf.

The default setup is valid for 230 and 86 GHz. For switching between 230 and 345 GHz the <u>following changes</u> need to be made to the setup.

- make sure the DBBC3 client is not running
- configure the DBBC3 using backendctl(on the EHT Control Computer cc-pico):

backendctl dbbc3 dbbc3 configure

• check for any errors

Validate the system

- make sure the DBBC3 client is not running
- validate the DBBC3 using backendctl(on the EHT Control Computer cc-pico):

backendctl dbbc3 dbbc3 check

• check for any errors

Check time synchronisation

Time syncronisation can be checked with the tick command via the serial interface.

Follow these steps below exactly. Omitting any step will lead to mal-functioning and will require to completely reload the firmware.

On the DBBC3 desktop:

- double-click the putty icon
- in putty open connection e.g. to DBBC3 Board A
- in the window hit enter to get to the command prompt and execute:
- tick
- compare the timestamps to a radio-controlled clock
- when done hit enter to stop the tick command
- close the putty window

Validate the VLBI System (Except DBBC3)

on the EHT control computer run:

backendctl whole check

This will check the setup of the control computer and the recorders. The check of the DBBC3 is not yet included in this procedure (see above).

Adjust power levels (DBBC3)

Basically low/high power levels should have been reported by setup script (see above).

In DBBC3 client e.g. on windows desktop or

on the control computer:

```
/home/oper/rottmann/dbbc3/utilities/dbbc3client.py dbbc3
```

System initialization

check attenuators, e.g. for board A:

dbbcifa

attenuator settings should be within 20-40, agc should be on

if reported attenuator level is out of range 20-40 the IF power must be decreased/increased.

Do test recording

backendctl mark6 all run test-recording 20 30

Recording starts with a delay of 20 seconds. Visually check if all recorders are actually recording.

Tone injection test

Inject a tone, record and verify that the tone appears in baseband at the correct location. This should be done for all 4 EHT bands.

For doing a test recording a plotting the resulting spectrum in both polarizations do:

log into the corresponding recorder e.g. recorder1

ssh -Y recorder1

execute:

plotdbbc3_m6.sh

The position of the peak can be found by hovering over it with the mouse and checking the reported coordinates. One can zoom into the plot by dragging a zoom window with the right mouse button.

Example setup:

1st LO: 221.1 GHz

2nd LO(DBBC3): 9.048 GHz

band	recorder	tone freq [GHz]	baseband tone freq [MHz]	calculation
lsb-hi	recorder1	212.6	548	tone - 1stLO + 2ndLO
lsb-lo	recorder2	214.6	1548	4.096 - (tone - 1stLO + 2ndLO)
usb-lo	recorder3	227.6	1548	4.096 + (tone - 1stLO - 2ndLO)

Observations: EHT

band	recorder	tone freq [GHz]	baseband tone freq [MHz]	calculation
usb-hi	recorder4	229.6	548	tone - 1stLO - 2ndLO

Load and execute the schedule

Scedules are located under /srv/vexstore

load the schedule that has been triggered by the AOC:

backendctl mark6 all schedule load trigger

Follow the schedule:

backendctl whole schedule follow trigger

Start the Mark6 monitoring client

copy the vex file (e.g. from /srv/vexstore/trigger) to /home/oper/shared/schedules

vex2xml.py -f {vexfile} -s Pv

check the contents of the generated {schedule}.xml if it contains scans

m6schedulemon.py recorder1 {schedule}.xml &

repeat for all recorders you want to monitor