
LuMP version 2.0 is in beta testing
2013 Aug 09

Usage
Setting Up the Environment
On the lofarXN computers at Effelsberg, using a bash shell, do

source /opt/lump/lump_2.0/SETUP.sh
The setup commands for (t)csh are not yet ready, but should become available soon (less than 1 week).

Note that the LuMP 2.0 compatible dspsr is not yet installed on the lofarXN recording computers at
Effelsberg.

Quick Overview
From lofarb1, the following command works for recording LOFAR pulsar data in the LuMP1 format:

Basic_LuMP_Recorder.py --port=4346 --clock_speed=200 --beamlets_per_lane=122 --datadir=. --
data_type_in=L_intComplex16_t --station_name=Ef --writer_type=LuMP1 --filename_base=test_out --
physical_beamlet_array='[0:122]' --subband_array='[12:134]' --rcumode_array='[5]*122' --
rightascension_array='[0.929337]*122' --declination_array='[0.952579]*122' --epoch_array='[J2000]*122' --
sourcename_array='[B0329+54]*122' --duration=10

The important parts are:

• --port give the port numer to listen to
• --beamlets_per_lane sets the beamlets per lane coming out of the LOFAR station. This should be

61 for the 16 bit mode, 122 for the 8 bit mode, and 244 for the 4 bit mode
• --data_type_in specify the type of data coming out of the station. This should be

L_intComplex32_t for the 16 bit mode, L_intComplex16_t for the 8 bit mode, and L_intComplex8_t
for the 4 bit mode.

• --station_name which station is being recorded
• --writer_type specify the type of writer format to use. LuMP0 for the original LuMP format (one

file per beamlet). LuMP1 for the new LuMP format (multiple beamlets per subband --- requires an
updated dspsr to process).

• --filename_base base of the filenames that are generated for writing data
• --physical_beamlet_array the physical beamlets being recorded
• --subband_array the subbands used for the corresponding beamlets

LuMP version 2.0

LuMP version 2.0 is in beta testing 1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

• --rcumode_array the rcumodes for the corresponding beamlets (note that different rcumodes are
possible for different beamlets at the same time)

• --rightascension_array the right ascension values (in radians) for the corresponding beamlets
• --declination_array the declination values (in radians) for the corresponding beamlets
• --epoch_array the epoch names (usually J2000 or SUN) for the corresponding beamlets
• --sourcename_array the name of the target source for each corresponding beamlet
• --duration the duration of the recording, in seconds

The start time may be specified with

• --start_date in the format YYYY-MM-DDTHH:MM:SSZ
Detailed Option Help
Basic_LuMP_Recorder.py --help
usage: Basic_LuMP_Recorder.py [-h] [--start_date START_DATE] --duration

DURATION --port PORT --station_name STATION_NAME
--datadir DATADIR [--data_type_in DATA_TYPE_IN]
[--clock_speed {200,160,0}]
[--beamlets_per_lane BEAMLETS_PER_LANE]
[--samples_per_packet SAMPLES_PER_PACKET]
[--main_recorder_logfile MAIN_RECORDER_LOGFILE]
[--recorder_num_cores RECORDER_NUM_CORES]
[--recorder_cache_size RECORDER_CACHE_SIZE]
[--recorder_ram_size RECORDER_RAM_SIZE]
[--writer_type WRITER_TYPE] --filename_base
FILENAME_BASE --physical_beamlet_array
PHYSICAL_BEAMLET_ARRAY --subband_array
SUBBAND_ARRAY --rcumode_array RCUMODE_ARRAY
--rightascension_array RIGHTASCENSION_ARRAY
--declination_array DECLINATION_ARRAY
--epoch_array EPOCH_ARRAY --sourcename_array
SOURCENAME_ARRAY
[--data_type_process DATA_TYPE_PROCESS]
[--data_type_out DATA_TYPE_OUT]
[--num_output_channels NUM_OUTPUT_CHANNELS]
[--num_polyphase_filter_taps NUM_POLYPHASE_FILTER_TAPS]
[--window_function WINDOW_FUNCTION]
[--window_parameter WINDOW_PARAMETER]
[--integration_time INTEGRATION_TIME]
[--scale_by_inverse_samples {0,1}]
[--extra_scale_factor EXTRA_SCALE_FACTOR]
[--bounds_check_output {0,1}]
[--extra_string_option_0 EXTRA_STRING_OPTION_0]
[--extra_string_option_1 EXTRA_STRING_OPTION_1]
[--extra_string_option_2 EXTRA_STRING_OPTION_2]
[--extra_string_option_3 EXTRA_STRING_OPTION_3]

LuMP version 2.0

Usage 2

[--extra_string_option_4 EXTRA_STRING_OPTION_4]
[--verbose] [--echo_only] [--stdin] [--version]

Python program to run LOFAR_Station_Beamformed_Recorder.py for basic LuMP
output mode operation on a single LOFAR recording computer.

optional arguments:
-h, --help show this help message and exit
--start_date START_DATE

OPTIONAL The date and time to begin recording, as a
UTC ISO date string of the format YYYY-MM-DDTHH:MM:SSZ
or as a hexadecimal number representing the integer
Unix timestamp in seconds since the reference epoch
1970-01-01 00:00:00 +0000 (UTC).

--duration DURATION *REQUIRED* Duration of measurment to listen to the
station, in seconds. Note that this is the duration
from the start_date, so if recording begins late, the
actual recorded duration will be smaller.

--port PORT *REQUIRED* Port number to listen to for incoming data
from a LOFAR station. Normally, this should be a
decimal number. When reading from a file (raw UDP
dump), this should be the filename, including any
necessary path, of the input file, preceded by FILE:.
For example, if your filename is
./MYDIR/somedir/myfile.raw then you would specify this
as --port=FILE:./MYDIR/somedir/myfile.raw in the
argument list. If the port specification starts with
UDP: then UDP network data are read from the port
number following the UDP: key. TCP: specifies that the
TCP protocol is to be used. The value - specifies that
the program should read from stdin. By default, the
program will use UDP access.

--station_name STATION_NAME
REQUIRED Name of the LOFAR station to record data
from. This should be of the type DE601, Ef, or EfDE601

--datadir DATADIR *REQUIRED* Name of the directory of the main data
recording area into which this recording will be
written. For example, suppose that the main data
recording area is '/media/scratch/observer', your name
is 'Astronomer', and you are observing on 2010 Dec 25.
You want all of the data to be recorded to your own
specific directory area, to not be confused with other
people's data, and you want to sort things by the date
of observation. Then you would set --datadir to
'/media/scratch/observer/Astronomer/20101225'. A

LuMP version 2.0

Usage 3

relative path name may be specified. The datadir '.'
may also be specified.

--data_type_in DATA_TYPE_IN
OPTIONAL data type of station beamforemd data.
Defaults to 26. Available options are: 7=L_int8_t (8
bit integer), 10=L_int16_t (16 bit integer),
11=L_int32_t (32 bit integer), 12=L_int64_t (64 bit
integer), 14=L_Real16_t (half precision floating
point), 15=L_Real32_t (single precision floating
point), 16=L_Real64_t (double precision floating
point), 17=L_Real80_t (80 bit extended precision
precision floating point), 18=L_Real128_t (quad
precision floating point), 19=L_Complex32_t (half
precision complex floating point, two L_Real16_t
values), 20=L_Complex64_t (single precision complex
floating point, two L_Real32_t values),
21=L_Complex128_t (double precision complex floating
point, two L_Real64_t values), 22=L_Complex160_t
(extended precision complex floating point, two
L_Real80_t values), 23=L_Complex256_t (quad precision
complex floating point, two L_Real128_t values),
24=L_intComplex8_t (complex integer, two L_int4_t
values, LOFAR 4 bit mode), 25=L_intComplex16_t
(complex integer, two L_int8_t values, LOFAR 8 bit
mode), 26=L_intComplex32_t (complex integer, two
L_int16_t values, LOFAR 16 bit mode),
27=L_intComplex64_t (complex integer, two L_int32_t
values), 27=L_intComplex128_t (complex integer, two
L_int64_t values)

--clock_speed {200,160,0}
Clock speed of station, in MHz. Defaults to 200

--beamlets_per_lane BEAMLETS_PER_LANE
OPTIONAL number of beamlets per RSP lane sent out by
the station. Defaults to 61

--samples_per_packet SAMPLES_PER_PACKET
OPTIONAL number of samples per packet sent out by
the station. Defaults to 16

--main_recorder_logfile MAIN_RECORDER_LOGFILE
Name of the logfile to write out for the main recorder
program. Defaults to
LOFAR_Station_Beamformed_Recorder.log

--recorder_num_cores RECORDER_NUM_CORES
OPTIONAL number of CPU cores to use for LuMP
recording. If 0 is specified, the software will
attempt to determine the number of cores available on

LuMP version 2.0

Usage 4

the recording computer and use all of them. Also note
that this only specifies the number of cores used by
the LuMP recording software itself --- CPU utilization
by downstream software that may be started by LuMP
(dspsr, for example) must be specified in the option
arguments to that software separately. Defaults to 0

--recorder_cache_size RECORDER_CACHE_SIZE
OPTIONAL size of the CPU cache, in bytes. This is
the size of the full cache per CPU (typically L3
cache), as reported by the 'cache size' listing in
/proc/cpuinfo. If specified as 0, LuMP will attempt to
determine this information automatically. Defaults to
0

--recorder_ram_size RECORDER_RAM_SIZE
OPTIONAL size of the RAM available for LuMP to use,
in bytes. If specified as 0, LuMP will attempt to
determine the amount of RAM available on the computer
and assume it can use all of that. Default 0

--writer_type WRITER_TYPE
OPTIONAL The enum code of the writer type to use.
Defaults to LuMP0. Available options are: 1=RAW (raw
voltages, separate files for each beamlet, for ALL
beamlets from the RSP board, for each polarization)
@@single_thread, 2=RAW0 (raw voltages, one data file
with ALL beamlets from the RSP board, all
polarizations) @@single_thread, 3=RAW1 (raw voltages,
separate files for each beamlet, for selected beamlets
from the RSP boardfor each polarization)
@@multi_thread, 5=POWER0 (power measuremnts integrated
over time, one data file containing the selected
beamlets and full polarization information)
@@multi_thread, 6=LuMP0 (raw voltage data for selected
beamlets in the LuMP output format, full polarization
information) @@multi_thread, 7=FFT0 (channelized
voltage data using an FFT, single data file for
selected beamlets, full polarization) @@multi_thread,
8=PFB0 (channelized voltage data using a polyphase
filterbank, single data file for selected beamlets,
full polarization) @@multi_thread, 9=POWER_FFT0
(channelized power measurements integrated over time
using an FFT, single data file for selected beamlets,
full polarization) @@multi_thread, 10=POWER_PFB0
(channelized power measurements integrated over time
using a polyphase filterbank, single data file for
selected beamlets, full polarization) @@multi_thread,

LuMP version 2.0

Usage 5

11=LuMP1 (raw voltage data for selected beamlets in
the LuMP output format, full polarization information,
single output file for all selected beamlets)
@@single_thread, 12=VDIF0 (raw voltage data in the
VDIF 2 format, a single data file is written for all
selected beamlets, with different threads for
different beamlets) @@single_thread,

--filename_base FILENAME_BASE
REQUIRED base string from which the output file
names will be generated. Note that this base filename
will be extended by a 2 digit hexadecimal number
indicating the writer ID number used to write out the
data (filename_base="%s.%2.2X"%(filename_base,ID)).

--physical_beamlet_array PHYSICAL_BEAMLET_ARRAY
REQUIRED Python-like array of the physical beamlets
to use for this writer. A combination of individual
physical beamlets and Python ranges may be used, such
as '[0,1,4,7,10:31,60:62]'. Ranges must have both
start and end specified as start:end. Note that the
notation here is a Python notation for the ranges
(start, start+1,start+2,...,end-1), which is different
from the ASTRON LOFAR station software.

--subband_array SUBBAND_ARRAY
REQUIRED Python array of the subbands corresponding
to the beamlets. A combination of individual physical
subbands and Python ranges may be used, such as
'[100,101,104,107,110:131,160:162]'. Ranges must have
both start and end specified as start:end. Note that
the notation here is a Python notation for the ranges
(start, start+1,start+2,...,end-1), which is different
from the ASTRON LOFAR station software. Python-style
array multipliers may be used to repeat subband
selections, such as when multiple pointing directions
use the same observing frequencies. For example,
'[0:2]*3' is equivalent to '[0,1,0,1,0,1]'. The
PHYSICAL_BEAMLET_ARRAY and SUBBAND_ARRAY should match
beamlet to subband at the same index.

--rcumode_array RCUMODE_ARRAY
REQUIRED Python array of the RCUMODEs corresponding
to the beamlets. Python-style array multipliers are
allowed, simplifying the standard case where all
beamlets have the same RCUMODE. For example, '[5]*244'
yields an array of RCUMODE values that is 244 elements
long, all with RCUMODE==5. Alternatively, individual
RCUMODE values may be specified in the standard Python

LuMP version 2.0

Usage 6

array syntax, such as '[5,5,5,5,6,6,7,7]'. Ranges may
also be specified as start:end. Note that the notation
here is a Python notation for the ranges (start,
start+1,start+2,...,end-1), which is different from
the ASTRON LOFAR station software. The
PHYSICAL_BEAMLET_ARRAY and RCUMODE_ARRAY should match
beamlet to RCUMODE at the same index.

--rightascension_array RIGHTASCENSION_ARRAY
REQUIRED Python array of the right ascensions (or
other coordinate if the Epoch is not J2000)
corresponding to the beamlets. *Note that the right
ascension is to be provided in units of radians, as it
is specified to the LOFAR beamctl program.* Python-
style array multipliers are allowed, simplifying the
standard case where all beamlets have the same
pointing direction. For example, '[1.23456789]*244'
yields an array of right ascension values that is 244
elements long, all with rightascension==1.23456789.
Alternatively, individual right ascension values may
be specified in the standard Python array syntax, such
as '[1,1,1,1,2,2,3,3]'. The PHYSICAL_BEAMLET_ARRAY and
RIGHTASCENSION_ARRAY should match beamlet to right
ascension at the same index.

--declination_array DECLINATION_ARRAY
REQUIRED Python array of the declinations (or other
coordinate if the Epoch is not J2000) corresponding to
the beamlets. *Note that the declination is to be
provided in units of radians, as it is specified to
the LOFAR beamctl program.* Python-style array
multipliers are allowed, simplifying the standard case
where all beamlets have the same pointing direction.
For example, '[1.23456789]*244' yields an array of
declination values that is 244 elements long, all with
declination==1.23456789. Alternatively, individual
declination values may be specified in the standard
Python array syntax, such as
'[0,0,0,0,0.5,0.5,1.0,1.0]'. The
PHYSICAL_BEAMLET_ARRAY and DECLINATION_ARRAY should
match beamlet to declination at the same index.

--epoch_array EPOCH_ARRAY
REQUIRED Python array of the epochs (or other
coordinate system identifiers) corresponding to the
beamlets. Python-style array multipliers are allowed,
simplifying the standard case where all beamlets have
the same pointing epoch. For example, '[J2000]*244'

LuMP version 2.0

Usage 7

yields an array of epoch values that is 244 elements
long, all with epoch==J2000. Note that the epoch
values do not require string quotation marks.
Alternatively, individual epoch values may be
specified in the standard Python array syntax, such as
'[J2000,J2000,HADEC, AZELGEO, SUN,MOON]'. The
PHYSICAL_BEAMLET_ARRAY and EPOCH_ARRAY should match
beamlet to epoch at the same index.

--sourcename_array SOURCENAME_ARRAY
REQUIRED Python array of the source names
corresponding to the beamlets. Python-style array
multipliers are allowed, simplifying the standard case
where all beamlets have the same source name. For
example, '[Cas A]*244' yields an array of epoch values
that is 244 elements long, all with sourcename==Cas A.
Note that the source name values do not require string
quotation marks. Alternatively, individual source name
values may be specified in the standard Python array
syntax, such as '[Cas A, Cas A, Cyg A, Cyg A, Hydra
A]'. Note that leading and trailing whitespace will be
removed. The PHYSICAL_BEAMLET_ARRAY and
SOURCENMAE_ARRAY should match beamlet to source name
at the same index.

--data_type_process DATA_TYPE_PROCESS
OPTIONAL Data type for internal processing. Defaults
to L_intComplex32_t. Available options are: 7=L_int8_t
(8 bit integer), 10=L_int16_t (16 bit integer),
11=L_int32_t (32 bit integer), 12=L_int64_t (64 bit
integer), 14=L_Real16_t (half precision floating
point), 15=L_Real32_t (single precision floating
point), 16=L_Real64_t (double precision floating
point), 17=L_Real80_t (80 bit extended precision
precision floating point), 18=L_Real128_t (quad
precision floating point), 19=L_Complex32_t (half
precision complex floating point, two L_Real16_t
values), 20=L_Complex64_t (single precision complex
floating point, two L_Real32_t values),
21=L_Complex128_t (double precision complex floating
point, two L_Real64_t values), 22=L_Complex160_t
(extended precision complex floating point, two
L_Real80_t values), 23=L_Complex256_t (quad precision
complex floating point, two L_Real128_t values),
24=L_intComplex8_t (complex integer, two L_int4_t
values, LOFAR 4 bit mode), 25=L_intComplex16_t
(complex integer, two L_int8_t values, LOFAR 8 bit

LuMP version 2.0

Usage 8

mode), 26=L_intComplex32_t (complex integer, two
L_int16_t values, LOFAR 16 bit mode),
27=L_intComplex64_t (complex integer, two L_int32_t
values), 27=L_intComplex128_t (complex integer, two
L_int64_t values)

--data_type_out DATA_TYPE_OUT
OPTIONAL Data type for output to disk. Defaults to
L_intComplex32_t. Available options are: 7=L_int8_t (8
bit integer), 10=L_int16_t (16 bit integer),
11=L_int32_t (32 bit integer), 12=L_int64_t (64 bit
integer), 14=L_Real16_t (half precision floating
point), 15=L_Real32_t (single precision floating
point), 16=L_Real64_t (double precision floating
point), 17=L_Real80_t (80 bit extended precision
precision floating point), 18=L_Real128_t (quad
precision floating point), 19=L_Complex32_t (half
precision complex floating point, two L_Real16_t
values), 20=L_Complex64_t (single precision complex
floating point, two L_Real32_t values),
21=L_Complex128_t (double precision complex floating
point, two L_Real64_t values), 22=L_Complex160_t
(extended precision complex floating point, two
L_Real80_t values), 23=L_Complex256_t (quad precision
complex floating point, two L_Real128_t values),
24=L_intComplex8_t (complex integer, two L_int4_t
values, LOFAR 4 bit mode), 25=L_intComplex16_t
(complex integer, two L_int8_t values, LOFAR 8 bit
mode), 26=L_intComplex32_t (complex integer, two
L_int16_t values, LOFAR 16 bit mode),
27=L_intComplex64_t (complex integer, two L_int32_t
values), 27=L_intComplex128_t (complex integer, two
L_int64_t values)

--num_output_channels NUM_OUTPUT_CHANNELS
OPTIONAL Number of output channels to make per
subband. Default is 1

--num_polyphase_filter_taps NUM_POLYPHASE_FILTER_TAPS
OPTIONAL Number of polyphase filter taps to use.
Default is 1

--window_function WINDOW_FUNCTION
OPTIONAL Type of window function to use. Defaults to
0. Available options are: 0=Rectangular 1=Hann
2=Hamming 3=Tukey 4=Cosine 5=Lanczos 6=Barlett0
7=BarlettN0 8=Gaussian 9=Bartlett_Hann 10=Blackman
11=Kaiser 12=Nuttall 13=Blackman_Harris
14=Blackman_Nuttall 15=Flat_Top

LuMP version 2.0

Usage 9

--window_parameter WINDOW_PARAMETER
OPTIONAL Extra parameter for specific window
functions. Defaults to 0.000000E+00.

--integration_time INTEGRATION_TIME
OPTIONAL The integration time, in seconds, for
averaging the total power data. Default=1.00E+00

--scale_by_inverse_samples {0,1}
OPTIONAL Should the total power values should be
scaled by the number of samples per integration? 0 No,
or 1 Yes.

--extra_scale_factor EXTRA_SCALE_FACTOR
OPTIONAL Extra scaling factor for total power.
Default is 1.00

--bounds_check_output {0,1}
OPTIONAL Should the software do bounds checking when
converting data types? 0 No, or 1 Yes. This is most
useful only for integer output types, whre the default
is a simple truncation of bits.

--extra_string_option_0 EXTRA_STRING_OPTION_0
OPTIONAL Extra string option for controlling some
writers. Default is ''

--extra_string_option_1 EXTRA_STRING_OPTION_1
OPTIONAL Extra string option for controlling some
writers. Default is ''

--extra_string_option_2 EXTRA_STRING_OPTION_2
OPTIONAL Extra string option for controlling some
writers. Default is ''

--extra_string_option_3 EXTRA_STRING_OPTION_3
OPTIONAL Extra string option for controlling some
writers. Default is ''

--extra_string_option_4 EXTRA_STRING_OPTION_4
OPTIONAL Extra string option for controlling some
writers. Default is ''

--verbose, -v write commands to screen as well as executing
--echo_only Only show the commands that would be processed, do not

actually run them
--stdin Read the arguments to the program from stdin instead

of from the command line. If this option is present,
it must be the only option on the command line
provided, and all regular options must be passed in
via stdin.

--version, -V Print the version number of this software and exit.

See the accompanying manual for more information.

LuMP version 2.0

Usage 10

LuMP version 2.0

Usage 11

	LuMP version 2.0 is in beta testing
	Usage
	Setting Up the Environment
	Quick Overview
	Detailed Option Help

