

Atacama Large Millimeter Array

APP Optical Fiber Link system prototype test report ALMA-05.11.40.03-0002-A-REP

Version: A Status: Draft 2013-04-24

Prepared By:	Organization	Signature and Date
Mareki Honma	National	
	Astronomical	
	Observatory	
	of Japan	
	_	
Approvals:		
TBD		
Release:		
TBD		

Doc #: ALMA-05.11.40.03-0002-A-REP Date: 2013-04-24 Status: Draft (Draft, Pending, Approved, Released, Superseded, Obsolete) Page: 2 of 11

Change Record

Version	Date	Affected Section(s)	Change Request #	Reason/Initiation/Remarks
А	2013-04-24	ALL	None	First Issue

Doc #: ALMA-05.11.40.03-0002-A-REP Date: 2013-04-24 Status: Draft (Draft, Pending, Approved, Released, Superseded, Obsolete) Page: 3 of 11

Contents

1 Int	troduction	5
1.1	Purpose	5
1.2	Reference Documents	5
1.3	Abbreviations and Acronyms	5
2 Pr	ototype production	5
3 Pr	ototype test	7
3.1	Full-data-rate transmission test	7
3.2	Attenuation tolerance test	8
3.3	Long-term running test	9
3.4	Power consumption	9
3.5	Acceptable input voltage	9
3.6	Power supply	9
3.7	Cooling capability	10
3.8	Software interface test	10

Doc #: ALMA-05.11.40.03-0002-A-REP Date: 2013-04-24 Status: Draft (Draft, Pending, Approved, Released, Superseded, Obsolete) Page: 4 of 11

List of Figures

Figure 1: Front view of XW-100	. 6
Figure 2: Rear view of XW-100	. 6
Figure 3: Schematic diagram for data transmission test at the full rate	. 7
Figure 4: Picture of the two sets of XW-100 under testing	. 8
Figure 5: Example result of attenuation tolerance test	. 9
Figure 6: Screen shot of telnet /VSI-S connection to the OFL system	11

Doc #: ALMA-05.11.40.03-0002-A-REP Date: 2013-04-24 Status: Draft (Draft, Pending, Approved, Released, Superseded, Obsolete) Page: 5 of 11

1 Introduction

1.1 Purpose

This document describes the details of prototype production and test results of the OFL system prototype.

1.2 Reference Documents

[RD 1] ALMA Phasing Project Plan[RD 2] APP Optical Fiber Link system design

1.3 Abbreviations and Acronyms

APP	ALMA Phasing Project
AOS	Array Operations Site
DWDM	Dense Wavelength Division Multiplexing
OFL	Optical Fiber Link
OSF	Operations Support Facility
NAOJ	National Astronomical Observatory of Japan
VLBI	Very Long Baseline Interferometry
VSI	VLBI Standard Interface

2 **Prototype production**

The purpose of the OFL system is to transmit the antenna sum data from the AOS to the OSF while using minimal fiber resources [RD01]. Based on the detailed design is summarized in the OFL system design document [RD02], prototype production was conducted in early 2013. Prototype manufacturer and model number are:

Manufacturer: Elecs Engineering

Model Number: XW-100 (both the Multiplexer and Demultiplexer)

Front and rear views of XW-100 are shown below. Nine slots on the front panel are attached with 10GBASE-SR XFP modules to constitute nine local ports including one spare. The DWDM remote port is located at the bottom-right corner of the front panel. On the rear panel, three cooling fans are attached. The power on-off switch is located at the bottom-left corner on the rear.

Doc #: ALMA-05.11.40.03-0002-A-REP Date: 2013-04-24 Status: Draft (Draft, Pending, Approved, Released, Superseded, Obsolete) Page: 6 of 11

Figure 1: Front view of XW-100

Figure 2: Rear view of XW-100

Doc #: ALMA-05.11.40.03-0002-A-REP Date: 2013-04-24 Status: Draft (Draft, Pending, Approved, Released, Superseded, Obsolete) Page: 7 of 11

3 Prototype test

In order to evaluate the performance the OFL system prototype XW-100, we have conducted various tests at the manufacturer as well as at NAOJ Mitaka, and below we report details of the test results.

3.1 Full-data-rate transmission test

Specification: The OFL system has to be capable of sending data at a total rate of 8 Gbps x 8 = 64 Gbps.

Test description: The test data from a 10GbE analyzer was sent to OFL system in a daisy chain mode so that one 10GbE stream is copied to all the nine ports (including the spare port) of Multiplexer and sent to Demultiplexer through a single fiber at the same time with DWDM technique. See figure 1 for the experiment setup. Note that an optical attenuator was inserted to emulate the fiber loss between AOS and OSF.

Result: Maximum data rate of 9.8Gbps x 9 (=88.2 Gbps) was achieved without any packet loss or any other error. Note that 9.8 Gbps is the maximum throughput of one 10GbE stream, and so XW-100 achieved the maximum transmission rate based on 10GbE.

Figure 3: Schematic diagram for data transmission test at the full rate

Doc #: ALMA-05.11.40.03-0002-A-REP Date: 2013-04-24 Status: Draft (Draft, Pending, Approved, Released, Superseded, Obsolete) Page: 8 of 11

Figure 4: Picture of the two sets of XW-100 under testing

3.2 Attenuation tolerance test

Specification: The optical fiber between AOS and OSF has an optical attenuation of about 7.5 dB. The OFL has to be able to establish a link between AOS and OSF with this attenuation.

Test descripition: An optical attenuator is inserted in the DWDMed stream between the Multiplexer and Demultiplexer, and attenuation tolerance level is measured.

Result: It is confirmed that the data can be correctly transmitted with an attenuation level less than 20 dB. Figure 5 shows an example of error rate measured against the attenuation level.

Figure 5: Example result of attenuation tolerance test

3.3 Long-term running test

Specification: The OFL system can be operated without any significant trouble for a period longer than normal VLBI observations (at least ~10 hours).

Test description: Long-term running test of the OFL system was conducted at the full data rate.

Result: No packet loss or data error occurred through the test run for three weeks.

3.4 Power consumption

Specification: Power consumption is less than 150 W. **Result:** Power consumption in regular operation is measured to be ~68 W.

3.5 Acceptable input voltage

Specification: Input AC voltage of 100/230 V must be accepted. **Result:** Operation is confirmed with input AC voltages of 90, 100, 110, 200, 230, 240 V.

3.6 Power supply

Specification: Operation with one power supply unit is possible. **Result:** Operation with one power supply unit is confirmed.

Doc #: ALMA-05.11.40.03-0002-A-REP Date: 2013-04-24 Status: Draft (Draft, Pending, Approved, Released, Superseded, Obsolete) Page: 10 of 11

3.7 Cooling capability

Specification: The OFL system must have cooling capability enough for operation at the high site. Cooling with two fans (out of the three fans attached) should be OK for redundancy.

Test description: Surface temperature of XFP module was measured with varying the number of fans in operation (decreasing from three to one). The experiments were done under room temperature and sea-level atmospheric pressure. Temperature increase with respect to the outside air temperature was measured as a function of the number of fans in operation.

Result: The temperature increase is summarized below. Maximum temperature increase was 9.5 C deg in case of one fan in operation. This corresponds to the XFP module surface temperature of \sim 35 C deg (using the room temperature of \sim 25 C deg), which is far below the maximum operation temperature of 75 C deg. Note that at the high site (AOS) the air density is roughly half of the sea-level atmosphere, and thus operation with one fan at the sea level roughly emulates operation with two fans at the high site.

Number of fans in use	Temperature increase ¹⁾	note
3	2.5 C deg	
2	5 C deg	
1	9 C deg	Roughly corresponds to operation with two
	_	fans at AOS

1) Surface temperature increase of XFP module with respect to the room temperature

3.8 Software interface test

Specification: The OFL system is connected through LAN with telnet / VSI-S protocol.

Result: Connection with telnet / VSI-S is confirmed. Commands are properly sent to Multiplexer and Demultiplexer and also statuses are properly retuned from Multiplexer and Demultiplexer. Figure 6 is a screen shot of the software interface test.

Doc #: ALMA-05.11.40.03-0002-A-REP Date: 2013-04-24 Status: Draft (*Draft, Pending, Approved, Released, Superseded, Obsolete*) Page: 11 of 11

🚱 192.168.2.110 - PuTTY	• x
1;!!=7;	^
1;11=7;	
set_alarmmask?;!set_alarmmask?0:000000000;	
show_alarm_hex?;!show_alarm_hex?0:23:00000000:00000000:00000000:01ff01ff;	
show_alarm_str?;!show_alarm_str?1:Temperature 23;	
!show_alarm_str?1:The XFP module of the 10G ZR port9 detects receiver loss of signal;	
!show_alarm_str?1:The XFP module of the 10G ZR port8 detects receiver loss of signal;	
!show_alarm_str?1:The XFP module of the 10G ZR port7 detects receiver loss of signal;	
!show_alarm_str?l:The XFP module of the 10G ZR port6 detects receiver loss of signal;	
!show_alarm_str?l:The XFP module of the 10G ZR port5 detects receiver loss of signal;	
!show_alarm_str?l:The XFP module of the 10G ZR port4 detects receiver loss of signal;	
!show_alarm_str?]:The XFP module of the 10G 2R port3 detects receiver loss of signal;	
!show_alarm_str?!:The XFP module of the 10G 2R port2 detects receiver loss of signal;	
!show_alarm_str?!:The XFP module of the 106 2R port1 detects receiver loss of signal;	
!show_alarm_str?!:The XFP module of the 106 local porty detects receiver loss of signal;	
show_alarm_str?l:The XFP module of the TUG local ports detects receiver loss of signal;	
show_alarm_str?!:he XHP module of the 10G local port/ detects receiver loss of signal;	
show_alarm_str?: The XFP module of the 10G local porto detects receiver loss of signal;	
show_alarm_striiihe XFP module of the 10G local porto detects receiver loss of signal;	
show_alarm_strf: The XFP module of the 10G local port4 detects receiver loss of signal;	=
show_alarm_strf: The XFP module of the 10G local port3 detects receiver loss of signal;	
show_alarm_strf: The XFP module of the 10g local port2 detects receiver loss of signal;	
Ishow_alarm_str?u:The XFP module of the TUG Tocal port detects receiver loss of signal;	
show_system:::show_system:0:ver.l.u.u:zul3/04/03 10:55:43;	

Figure 6: Screen shot of telnet /VSI-S connection to the OFL system.