
APP Mark6 Recorder Test Procedures

ALMA-05.11.50.02-0001-A-PRO

2014-11-18

Prepared by: Organization Role Date and Signature

G. Crew MIT

Approved by: Organization Role Date and Signature

Authorized by: Organization Role Date and Signature

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 2 of 28

Change Record

Version Date Affected Section(s) Author Reason/Comments
A 2014-11-18 All G. Crew First Issue

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 3 of 28

Contents

Change Record 2

1 Introduction 5
1.1 Purpose . 5
1.2 Scope . 5
1.3 Reference Documents . 5
1.4 Acronyms . 5

2 Operational Background 7
2.1 VLBI Background . 7
2.2 Implementation . 8
2.3 Filesystem . 8
2.4 General Usage . 8

3 Installation 10

4 Startup, Shutdown and Module Handling 13
4.1 Startup . 13
4.2 Shutdown . 14
4.3 Module Removal . 14
4.4 Module Insertion . 14
4.5 Module Initialization . 14
4.6 Module Trouble-shooting . 15

4.6.1 Missing Disks . 15
4.6.2 Module Initialization Problems . 16
4.6.3 Other issues . 16

4.7 Housekeeping Parameters . 16
4.8 CCL Interface to Housekeeping . 17

5 Monitoring and Maintenance 18

6 Mark6 Scripts and Programs 19
6.1 Mark6 Components . 19

6.1.1 cplane . 19
6.1.2 dplane . 19
6.1.3 dboss . 19
6.1.4 dpstat . 19
6.1.5 gather . 20
6.1.6 gator . 20
6.1.7 dqa . 20
6.1.8 da-client . 20
6.1.9 M6 CC . 20
6.1.10 m6sensors.sh . 20

6.2 Development Scripts . 20
6.2.1 m6tester.sh . 20

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 4 of 28

6.2.2 miscellaneous supporting utilities . 21
6.2.3 module qualification . 22
6.2.4 evalpush.sh . 22
6.2.5 vdifuse . 22

6.3 “Doit” and Friends . 23
6.4 DiFX . 23
6.5 Science Scripts . 23

6.5.1 VLBIRecorderSetup.py . 23
6.5.2 VLBITestObs.py . 23
6.5.3 VLBITestAdj.py . 23
6.5.4 ripVLBIlog.py . 24

7 Specific Test Descriptions 25
7.1 General . 25
7.2 Module Test . 25

7.2.1 using doit . 25
7.2.2 using hammer . 26

7.3 Link Test and Packet Rate . 26
7.3.1 ifconfig . 26
7.3.2 interrupts . 27
7.3.3 filled packets . 27

7.4 Multi-Quadrant ASUMMER Test . 27
7.4.1 Multi-Stream Time Offsets . 27
7.4.2 Analysis . 28

7.5 Multi-Quadrant Science Correlations . 28

List of Figures

3.1 Recorders 1 and 4 installed in the designated OSF computer room rack. The OFLS
demux unit is at the top. Between the recorders is the network switch which connects
the recorders to the AOS net and also provides a private network between the recorders. 11

3.2 Back side of the Mark6 recorder. 12

List of Tables

1.1 Reference Documents . 5

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 5 of 28

Chapter 1

Introduction

1.1 Purpose

This document describes procedures for testing the Mark6 recorders. Such tests are in general
aimed at either testing the recorders themselves, or for testing other parts of the system (e.g. the
OFLS units or PICs).

1.2 Scope

This document is limited to describing various testing procedures and some theory of operations
background information. It does not cover ”VLBI” expert procedures. There is additional informa-
tion in the set of manuals provided with the recorder system. Current copies are maintained at
http://www.haystack.mit.edu/tech/vlbi/mark6/documentation.html beyond those supplied
to EDM at the time of Acceptance.

Almost all of the tests mentioned here are intended to be performed by the APP team. Other
documentation will provide non-test procedures.

1.3 Reference Documents

The following documents contain additional information, are referenced in this document, and
should be consulted for further, more detailed information.

Table 1.1: Reference Documents

Reference Document Title Document ID
[RD1] APP Update to Corr/Control Design ALMA-05.11.61.01-0001-A-DSN
[RD2] Mark6 Command Set rev 1.2
[RD3] Getting Started with your Mark6 rev 1.0.1
[RD4] Mark6 User’s Guide rev 1.0
[RD5] Mark6 Usage Examples rev 1.0

1.4 Acronyms

ALMA Atacama Large Millimeter/submillimeter Array

APP ALMA Phasing Project

CCL Control Command Language

DBE Digital Back End

http://www.haystack.mit.edu/tech/vlbi/mark6/documentation.html

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 6 of 28

DiFX Distributed FX (Software Correlator)

EDAC Error Detection And Recovery

EP Engineering Port

MIT Massachusetts Institute of Technology

NTP Network Time Protocol

OFLS Optical Fiber Link System

PIC Phasing Interface Card

PNG Portable Network Graphics

TFB Tunable Filter Bank

VEX VLBI EXperiment file

VDIF VLBI Data Interchange Format

VLBI Very Long Baseline Interferometry

VOM VLBI Observing Mode

VSI-S VLBI Standard Interface for Software

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 7 of 28

Chapter 2

Operational Background

This section provides some context or theory of operation for the recorder.

2.1 VLBI Background

The Mark6 recorder is an improvement on the previous generation of Mark5 recorders developed
as a replacement for tape devices which were used for many years with VLBI hardware correlators.
(The Mark4 hardware correlator was the last of the line of VLBI hardware correlators developed
at Haystack and used tape recorders.) In VLBI systems, the recorders record the ”raw” baseband
data at prodigious rates so that data from distant VLBI stations may be correlated at the VLBI
correlator.

The Mark6 recorder is a commercial (COTS) hardware system with (open) software developed
at Haystack with an eye towards some compatibility with the previous generation of Mark5 recorder,
and general adoption in the community. The detailed command set is explained in [RD2]; but in
normal operations, the recorders are operated transparently through the ALMA control system as
explained in [RD1].

The embedded system is a Debian flavored UNIX operating system, which is the least problem-
atic from an intellectual property or export control viewpoint. It is supplied with current software
and security and (since it is an embedded system with extremely limited user access) it does not
require updates to stay ”current”.

The recorder is provided with one user account (oper) which is necessary for the testing as
described in this document. Certain operations must be performed as the super-user (root). How-
ever, once installed and tested, the recorder is completely controlled through a service interface
socket connection.

A point of nomenclature: the recorders are known on the Control system side as Recorder1
through Recorder4 (with Recorder0 as a spare). However, the vendor, Conduant, labels each host
with a number in series from 4000. The recorders at ALMA are 4004 through 4008. The expansion
chassis also are numbered; this time starting with 5000. The recorders don’t actually need or
care what expansion chassis they work with, but we have arranged at ALMA that Recorder1 is
4005&5005, Recorder2 is 4006&5006, &c. .

For operations, the recorders need to be time-synchronized using NTP so that recordings are
made at the proper time. Note, however, that in most cases, the underlying (high-precision) timing
arrangements are made by the digital back end (DBE) which provides the data to the recorder in
the form of time-tagged (VDIF) network packets.

A final comment is that historically, tapes were notorious for generating relatively high bit
errors. (It really is a technical challenge to record to tapes at high rate; error rates at the 10−4 level
were typical.) As a consequence, most of the VLBI processing of the baseband data is somewhat
tolerant of errors. Modern disks on the other hand are designed to work with systems that are far
less forgiving. So the disk controllers in the disk hardware usually incorporate a certain amount of
error detection and recovery (EDAC) and therefore real errors are rare, unless the disk is failing.
Thus, as a general rule, it is not necessary to check every bit of a recording—failures, when they

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 8 of 28

occur are generally rather gross.

2.2 Implementation

The embedded application running on the recorder was (for a variety of reasons) partitioned
into two applications:

cplane the higher-level server application (implemented in Python) providing a command inter-
face, and

dplane the lower-level utility application (implemented in C) to manage the data operations

Generally speaking, one operates the recorder by making a socket connection (the default con-
figured port is localhost:14242) to cplane and making one or more so-called VSI-S commands.
A simple client (da-client) is provided for this purpose. One may also connect to dplane directly
via a utility program (dboss) for certain operations.

2.3 Filesystem

After logging into the recorder as oper, all work is done in that user’s home directory. It usually
contains several subdirectories:

oper@Mark6-4005:~$ ls -l
drwxr-xr-x 2 oper oper 4096 Oct 18 15:09 bin
drwxr-xr-x 10 oper oper 4096 Oct 25 00:58 bmr
drwxr-xr-x 4 oper oper 4096 Oct 26 01:24 difx
drwxr-xr-x 2 oper oper 4096 Oct 26 00:49 logs
drwxr-xr-x 17 oper oper 4096 Oct 26 00:49 test

These are employed as follows:

bin This directory is in the user PATH and contains executables or test scripts such as might be
required for some of this testing. These objects are outside of the normal Mark6 product
(which is installed in normal system areas, e.g. /usr/bin).

bmr This directory contains special test software that is built and installed into ∼ oper/bin).

difx This directory is a work area for using the DiFX correlation software which was installed for
testing the recorded data. This has subdirectories data and test for managing the correlation
data and running the (test) correlations.

logs This directory is used to collect logfiles from various test sessions (for further analysis as
required).

test This directory is where testing activities are concentrated. Some output is directed to a
directory out to avoid clutter.

In particular, after login, cd /test before doing anything else.

2.4 General Usage

In normal usage, the recorder is operated according to a schedule supplied by the ALMA control
system. However, for test purposes, it is relatively easy to make “manual” recordings. The Mark6
recorder is designed to be rather flexible, so to do so (connect via da-client):

• the recorder must be suppied with viable media (enough modules for the desired recording
rate) (this uses the mstat? query)

• the recorder must be informed which modules to write to (this uses the group command)

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 9 of 28

• the recorder must be informed which network interfaces are supplying data and what the
packetization structure is (this uses the input_stream command)

• the recorder can then record immediately for a specified recording duration (record com-
mand), or

• the recorder can make a recording of specified duration at a specified time (record command)

• the recorder can (after the recording) verify the integrity of the recording (using the scan_check
query)

These commands may be issued manually to da-client when doing low-level tests. When the
control system is active, there is a CCL script VLBIRecorderSetup.py that performs this setup in
the way expected for normal operations.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 10 of 28

Chapter 3

Installation

Installation of the Mark6 recorders is generally covered in [RD2] and [RD3]. Rails to support
the recorders in the racks were provided, and the screw alignments (recorder chassis to rails) is
straightforward.

One detail to pay attention to is that the cables which connect the recorders to the disk modules
are routed through a 1U divider section which is usually placed between the recorder host section
(with module slots 1 and 2) and the expansion chassis (hosting modules 3 and 4). Proper attention
must be paid so that the pairs of cables to each module are attached (as explained in [RD3])
through the named slot. After the recorders are booted, this should be verified by noting that the
disk serial numbers of each module appear in the appropriate slot.

It was found helpful to exceed the instructions of [RD3] by wrapping colored (red and yellow)
electrical tape around the cables. Also labelling the connectors on the back is helpful. When cables
are connected to modules, yellow goes on top and red on the bottom.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 11 of 28

Figure 3.1: Recorders 1 and 4 installed in the designated OSF computer room
rack. The OFLS demux unit is at the top. Between the recorders is the network
switch which connects the recorders to the AOS net and also provides a private
network between the recorders.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 12 of 28

Figure 3.2: Back side of the Mark6 recorder.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 13 of 28

Chapter 4

Startup, Shutdown and Module
Handling

4.1 Startup

There are several power switches on the Mark6 recorder. The ones on the front are rocker-type
for on/off. The ones on the back (0|1) are for the power supply. In the event of a power outage,
the module keys should be turned to the off (vertical) position. Then:

1. Verify that all module present are unpowered (key in vertical position)

2. Verify that the back switches are in the powered position (1)

3. Press and hold (a second or two) the expansion chassis rocker switch

4. Press and hold (a second or two) the recorder host chassis rocker switch

5. Wait for the recorder to boot (two minutes)

At this point it is safe to power the modules. Turn them on one at a time (the largest current
draw is during power-up to get the disks spinning) in slot order (1, 2, 3, and 4):

1. Turn the key to the on (horizontal) position

2. Notice that green LEDs (one per disk in the module for a total of 8) come on a few times

3. Proceed to the next module

The keys should remain in the locks, but they may be withdrawn in either the on or off positions.
(I.e. the keys are required to allow transitions.) If there are issues with any of the modules it is
more productive to trouble-shoot from a terminal.

Once all disks are powered, one may proceed to mount them using cplane. Generally, the
modules will have been bound into a group “1234”, so

oper@Mark6-4005:~$ da-client
Host: 127.0.0.1 port: 14242
>> group=open:1234
<< !group=0:0:1234;
>> mstat?
<< !mstat?0:0:1234:1:MHO%0011/24000/4/8:8:8:10068:24000:open:ready:sg:...
>>

which normally takes a few minutes.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 14 of 28

4.2 Shutdown

Prior to shutting down the recorders, the disks should be unmounted from cplane:

oper@Mark6-4005:~$ da-client
Host: 127.0.0.1 port: 14242
>> group=unmount:1234
<< !group=0:0:1234;
>>

which normally takes a few minutes. If there are any issues, you should become root and unmount
any mounted disk with /mnt in the mount point.

1. At this point you should turn the module keys to off (vertical) one at a time (no need to
wait, no particular order).

2. Press and hold the host chassis rocker switch (a second or two)

3. Press and hold the expansion chassis rocker switch (a second or two)

The 0|1 power switches in the back can also be powered off (to 0) for safety.

4.3 Module Removal

Modules should only be removed when not powered (key vertical).
When powered-off, the two data cables should be disconnected, using the blue pull-tabs.
The module lock (at the lower-left corner in the front) is designed to gently extract the module.

Pull it forward until it “clicks” and the module should then be free to slide out. Hold it by the
handle—it is heavy.

4.4 Module Insertion

Modules should only be inserted when power to the slot is off (key vertical).
Slide the module in on the two rails at the bottom of the slot.
Use the module lock (at the lower-left corner in the front) to gently make the mating connection

to host power. (You should have it “clicked” down to before insertion, and “click” it up to make the
connection.)

Connect the two data cables; the yellow one goes in the top slot. There should be a “click” when
it is fully inserted.

At this point the key may be turned horizontal (power on). You should see the 8 green LEDs
flicker as the host computer notices the disks.

4.5 Module Initialization

The procedure to set up modules is described in the Mark6 manuals. Generally modules will
be shipped to ALMA already initialized. However, to create a fresh module you only need to know
the slot number and the “label” for the module (8 characters, including %). Then in da-client,
for example:

mod_init=1:8:MHO%0004:sg:new;

is the command to initialize the module in slot 1 to the module “label”MHO%0004. The “sg” refers to
the so-called scatter-gather filesystem used by the Mark6. Finally “new” causes a complete erasure
of the module. Leaving this out:

mod_init=1:8:MHO%0004:sg:;

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 15 of 28

is used to take a module back to the no-group initial module state. This is needed if the mod-
ule has been previously “grouped”; this command (without the “new”) destroys memory of those
associations.

Normally, modules used at ALMA are grouped 4 to a recorder (group named by slots: “1234”)
to allow 16 Gbps recording. So one would repeat the appropriate commands above on the modules
in slots 2, 3 and 4 (i.e. change the slot number and module label name).

4.6 Module Trouble-shooting

4.6.1 Missing Disks

A common cause of problems with the modules is that one or both of the data cables are not
fully inserted. The linux utility lsscsi may be used to identify which disks are present:

oper@Mark6-4005:~$ lsscsi
[0:0:0:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdb
[0:0:1:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdc
[0:0:2:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdd
[0:0:3:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sde
[0:0:4:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdf
[0:0:5:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdg
[0:0:6:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdh
[0:0:7:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdi
[0:0:8:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdj
[0:0:9:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdk
[0:0:10:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdl
[0:0:11:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdm
[0:0:12:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdn
[0:0:13:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdo
[0:0:14:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdp
[0:0:15:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdq
[3:0:0:0] cd/dvd ATAPI iHAS124 W HL04 /dev/sr0
[4:0:0:0] disk ATA WDC WD5003AZEX-0 80.0 /dev/sda
[14:0:0:0] process Marvell Console 1.01 -
[17:0:0:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdr
[17:0:1:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sds
[17:0:2:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdt
[17:0:3:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdu
[17:0:4:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdv
[17:0:5:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdw
[17:0:6:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdx
[17:0:7:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdy
[17:0:8:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdz
[17:0:9:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdaa
[17:0:10:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdab
[17:0:11:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdac
[17:0:12:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdad
[17:0:13:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdae
[17:0:14:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdaf
[17:0:15:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdag

There are two disks controllers; each gets two modules (disks [0:0:0:0] through [0:0:7:0] and
[0:0:8:0] through [0:0:15:0], or disks [17:0:0:0] through [17:0:7:0] and [17:0:8:0] through [17:0:15:0]),
for 32 mounted disks in all. The linux kernel assigns “scsi disk” names to all of them (/dev/sdb
through /dev/sdag).

If a cable is not properly inserted (front or back), a contiguous group of 4 disks will be missing
from the list above.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 16 of 28

4.6.2 Module Initialization Problems

On relatively rare occasions, the kernel doesn’t quite keep up with the disks when these are
being inserted for the first time, or built into modules. A reboot is often a way to resolve this.

4.6.3 Other issues

Consult the Mark6 forum http://www.haystack.mit.edu/tech/vlbi/mark6/documentation.
html.

4.7 Housekeeping Parameters

During normal operation (software release R2014.2 and later) the recorder housekeeping is
captured routinely and made available at the monitoring site http://monitordata.osf.alma.cl,
organized by date and time. The recorder data are under CONTROL_VLBI_Recorder1/ through
CONTROL_VLBI_Recorder4/. This data is gathered by the ALMA control system software whenever
current releases are active (and the recorders are on the network).

The data are collected internally by a script (m6sensors.sh), which takes a number of argu-
ments. In normal usage, the “alma” argument provides a terse one-liner to the control software.
With the “full” argument, it outputs a fairly detailed list of the raw sensor data gathered from a
variety of sources:

oper@Mark6-4005:~$ m6sensors.sh full
date
time/ 20141118T194941.434306457

sensors
in0: +0.95 V (min = +0.00 V, max = +1.74 V)
in1: +1.82 V (min = +0.00 V, max = +0.00 V) ALARM
in2: +3.28 V (min = +0.00 V, max = +0.00 V) ALARM
in3: +3.28 V (min = +0.00 V, max = +0.00 V) ALARM
in4: +0.98 V (min = +0.00 V, max = +0.00 V) ALARM
in5: +1.65 V (min = +0.00 V, max = +0.00 V) ALARM
in7: +3.41 V (min = +0.00 V, max = +0.00 V) ALARM
in8: +3.25 V (min = +0.00 V, max = +0.00 V) ALARM
fan2: 3221 RPM (min = 0 RPM) ALARM
SYSTIN: +42.0◦C (high = +0.0◦C, hyst = +0.0◦C) ALARM sensor = thermistor
CPUTIN: +28.0◦C (high = +80.0◦C, hyst = +75.0◦C) sensor = thermistor
AUXTIN: +40.0◦C (high = +80.0◦C, hyst = +75.0◦C) sensor = thermistor
PECI Agent 0: +33.5◦C
cpu0_vid: +1.708 V

proc
MemTotal: 66077064 kB

pscmd
23890 oper 87.3 7.1 dplane
23893 oper 0.0 0.0 cplane

dfcmd
/dev/sda1 440G 25G 393G 6% /

lscsi
[0:0:0:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdb
[0:0:1:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdc
[0:0:2:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdd

http://www.haystack.mit.edu/tech/vlbi/mark6/documentation.html
http://www.haystack.mit.edu/tech/vlbi/mark6/documentation.html
http://monitordata.osf.alma.cl

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 17 of 28

[0:0:3:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sde
[0:0:4:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdf
[0:0:5:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdg
[0:0:6:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdh
[0:0:7:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdi
[0:0:8:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdj
[0:0:9:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdk
[0:0:10:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdl
[0:0:11:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdm
[0:0:12:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdn
[0:0:13:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdo
[0:0:14:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdp
[0:0:15:0] disk ATA ST3000DM001-1CH1 CC29 /dev/sdq
[4:0:0:0] disk ATA WDC WD5003AZEX-0 80.0 /dev/sda
[17:0:0:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdr
[17:0:1:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sds
[17:0:2:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdt
[17:0:3:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdu
[17:0:4:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdv
[17:0:5:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdw
[17:0:6:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdx
[17:0:7:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdy
[17:0:8:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdz
[17:0:9:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdaa
[17:0:10:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdab
[17:0:11:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdac
[17:0:12:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdad
[17:0:13:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdae
[17:0:14:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdaf
[17:0:15:0] disk ATA WDC WD4001FAEX-0 1L01 /dev/sdag

ntp
remote refid st t when poll reach delay offset jitter

==
*10.197.50.101 LOCAL(0) 2 u 148 1024 377 0.502 -3.571 0.967
+200.89.75.197 200.54.149.24 2 u 673 1024 377 30.734 2.195 0.944
+200.1.19.4 200.27.106.115 2 u 1012 1024 377 35.891 1.241 2.874
+200.1.22.6 69.36.224.15 2 u 512 1024 377 41.778 6.211 2.539
+200.1.19.16 200.27.106.116 2 u 879 1024 377 37.398 2.042 3.993

In the sections above, “sensors” is provided by lm_sensors and provides low-level voltages,
temperatures, and the fan speed. These are mostly provided to allow long-term monitoring of the
system health, since if any of them are seriously out of range, the computer will shut itself down.

There are a few diagnostics on total memory (“proc”) running processes (“pscmd”; specifically
that both cplane and dplane are running) and disk usage (“dfcmd”, since if the root disk is full,
nothing will run properly). The “lscsi” output we’ve seen above, and “ntp” provides the offset to
other recorders and/or hosts.

4.8 CCL Interface to Housekeeping

This housekeeping information discussed in the previous section is available in summary form
via the CCL recorder STATUS() method.

Other methods are available but are not documented here.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 18 of 28

Chapter 5

Monitoring and Maintenance

During the development period, Haystack is responsible for any maintenance. However, as these
are new machines, little is required.

It is important to note that some of the test logs and correlation activities produce significant
amounts of data. If the ∼ oper/directory fills up with too much data, that will also fill up the root
filesystem which will prevent the computer from operating normally.

So, delete temporary products, and offload test results when possible.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 19 of 28

Chapter 6

Mark6 Scripts and Programs

One should recognize that while the Mark6 is presented to ALMA as a completed hardware
component, to the rest of the VLBI community the Mark6 is still being developed to support
a number of different capabilities in the future. Thus the testing for ALMA has been carried out
primarily with the 1.1 software release which contains all the required functionality. Patches to that
release, developed during testing will be provided as the 1.2 software release “delivery”. However,
it is expected that ALMA may wish to upgrade to later releases in the future for more robust
operation.

As a consequence of this, the Mark6 software is installed as a collection of parts, and some of
them (especially the testing ones) are evolving. In this section we review the testing tools available
for the testing carried out for ALMA.

All of the programs mentioned here have some help available at the command line, either via
-h or --help.

6.1 Mark6 Components

The Mark6 components are installed from unpacked distributions placed in /usr/local/src
and installed (primarily) into /usr/local/bin or /usr/bin. These include:

6.1.1 cplane

This is the high-level Mark6 server. It manages all Mark6 operations and controls the lower-level
“data plane” utility dplane.

6.1.2 dplane

This is the low-level “data plane” utility. It is managed by cplane. Because it reads the ethernet
devices in “promiscuous” mode, it must run as root.

6.1.3 dboss

This is a utility for directly commanding dplane. Only the “t” and “s” commands are still
occasionally useful. (The command is a relic from initial development.)

6.1.4 dpstat

This utility captures status message that dplane emits to monitor the low-level state. It is
invoked with the hostname of to be monitored. (At ALMA the messages don’t leave the machine,
so

$ dpstat ‘hostname‘

is the standard invocation.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 20 of 28

6.1.5 gather

This low-level primitive will “gather” the scans from one recording into a single output file.

6.1.6 gator

This utility script invokes gather to collect the scattered files into a single file for examination.

6.1.7 dqa

This utility program reads an entire scan and analyzes it in detail. It is thorough, but slow.

6.1.8 da-client

This utility opens a socket to cplane and manages the command-response converstation. It also
makes sure that commands end with a semicolon. Consult [RD2] for the exact command syntax
and meaning.

6.1.9 M6 CC

This is the utility script invoked by the cplane to run a recording schedule. It is provided
separately to allow per-site modifications to the general paradigm.

6.1.10 m6sensors.sh

This utility script queries a variety of sources to gather the housekeeping reported by the
recorders in the high-level (CONTROL) software.

6.2 Development Scripts

The developmental scripts are distributed via an svn repository checked-out into ∼ oper/bmr
and refreshed as needed. It has been stable for some time as far as the Mark6 is concerned, but
it also supports some of the DiFX development particular to VLBI at ALMA. Eventually these
tools will migrate into the Mark6 distribution. (They are NOT required for normal operations of
the recorders.) These tools install in ∼ oper/[bin]. They include:

6.2.1 m6tester.sh

This is a general “wrapper” script that allows execution of one of several standard scripts that
generate a test VLBI session, record (bogus) data for it and analyze the result.

As a side effect, it exercises the recorder in an operational manner, verifying its performance
for the sample schedule.

loopback.sh

This version allows a Mark6 to test itself (one 8 Gbps stream).

dberecord.sh

This version is usable when a digital back end (DBE) is available.

peerpush.sh

This is a version where a pair of Mark6s are configured to test each other. This version runs
push_test on one to simulate the DBE and records on the other.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 21 of 28

peertest.sh

A variant form of peerpush.sh with equivalent functionality. This version exercises the recorder’s
ability to run an XML schedule file.

dualtest.sh

This form uses push_test to simulate 16 Gbps recording (two 8 Gbps streams).

6.2.2 miscellaneous supporting utilities

create-schedule.py

A Python script which generates a testing schedule consisting of some number of VLBI scans.
The duration and separation of the scans can be random and specified within certain ranges to
simulate a wide variety of VLBI recording possibilities.

vdif time

A small program that converts between several different (non-standard) time representations
found in VLBI work. VDIF times are specified as seconds within one of a set of 64 epochs (two per
calendar year).

push test

A small program that generates a legal VDIF packet stream for the recorders to record. Its
distinguishing characteristic is that the data in the packets is statistically valid (but not particularly
random) and marked to allow a companion program mark_check to validate it.

vv

A small widget built on libpcap to allow raw packet capture and some “on-the-fly” diagnostics
on the data stream. It started as a clean way to hex-dump packets caught with wireshark or
tcpdump, but grew (organically) a few more uses. The most useful capability is one to compare
the time in the data packet stream with the record clock. This is most useful to establish that the
packet timing is correct to a resolution of several milliseconds.

Since this program has full access to the raw packet stream, and that is considered “privileged”
information, this program needs to be run as root.

byte-rate.py

This is a widget to monitor the incoming packet rate to the network devices and log the value
with the system clock time. This allows for an application-independent measurement of packets
arriving to the recorders.

timechk.sh

This is a simple widget to use vv to sample incoming packet times and to compare them with the
system clock, and also to notice the current number of processor interrupts. Analyzing the logged
data allows one to work out systematic offsets between PICs. This is not needed for use in normal
operations, when the packet times are set correctly, automatically. Rather it is for Engineering Port
situations where the PIC times are set by hand, and therefore only approximately correct.

g4sc.sh

This is a simple driver script that can be editted as needed to perform more thorough scan
checks on scans recorded from the control system.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 22 of 28

ssh-cron.pl

A perl script that allows one to prepare an SSH “agent” capable of handling operator authenti-
cation for a remote, long duration session. This is necessary to allow access to the OSF recorders
only during engineering time to set up a long duration, unattended module test.

6.2.3 module qualification

When it is desirable to test the disks in the modules more directly (and keep cplane/dplane
out of it), one has many options for disk testing. Mark5 modules require “conditioning” prior to
use. Fundamentally, this is due to the way disk controllers cope with bad surfaces (and have done
so for several decades). The internal disk real estate is subdivided into sectors (e.g. 512 bytes) and
if the controller is unable to read data from a given sector, it is declared “bad” and “spared”. That
is, the bad sector is transparently replaced by one from a special set of good sectors. This process
takes time, however (and bad sectors truly are bad), so it is desirable to write and read an entire
module prior to use.

hammer.sh

Is a fairly simple utility that writes files of a fixed size until a module is full, and then reads
them back and checksums them. This is equivalent to the Mark5 “conditioning” process.

hammerplot.sh

This is a script to graphically plot the log data saved after hammer.sh is done.

6.2.4 evalpush.sh

This is a VLBI scan evaluator that can invoke any of several checking programs mark_check,
scan_check or dqa to verify a schedule of recordings.

mark check

This is a program written specifically to verify data that presumably was generated by push_test
and report on issues. It has modes to randomly check some fraction of data, or to sequentially check
every packet as desired.

scan check

This is a standard VLBI capability to verify that, following a VLBI recording, that the data
is valid. In the Mark6 implementation, it is available directly within cplane to produce a one-
liner response to the scan_check query, or in this case as a stand-alone command to provide
progressively more verbose reports on the scan (fragment) contents. When invoked by cplane, the
scan_check runs in a relatively fast mode where it merely checks the basic integrity of the scan
and verifies a small sample of the data. When invoked offline at the UNIX command prompt, one
can use options to increase the level of checking.

6.2.5 vdifuse

This program provides a FUSE (Filesystem in User SpacE) interface to the scatter-gather files
recorded by the Mark6. Basically it presents an interface to the kernel so that scans (which in fact
are scattered on up to 32 separate filesystems) appear to ordinary UNIX programs as a single file.
It is still under development, but it is essential to allow current Mark6 recordings to be accessible
to DiFX.

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 23 of 28

6.3 “Doit” and Friends

Given the above plethora of scripts and testing options and hardware configurations across the
various Mark6 recorders setup in various ways at various times, it was found convenient to write a
simple “just do it” script to launch the test of the hour. This script typically lives in ∼ oper/test
and is named with the name of the recorder, e.g. ./doit-4005.sh. As cables are reconfigured, it is
simple to adjust the script with, e.g. new ethernet device names, or the address of peer recorders.

Additional “one-off” scripts are also written to automate the mechanics of testing data files in
various ways. (These usually start as a single UNIX command line, and then migrate into a small
file with a slightly more general version.)

6.4 DiFX

As indicated, DiFX is installed on the recorders to allow data recorded to be analyzed from the
perspective of the ultimate consumer (i.e. the VLBI correlator). Normally, after a VLBI session,
the recorded modules are shipped to the VLBI correlator (e.g. Haystack or Bonn). Having DiFX
installed means that certain tests can be carried out in situ by a qualified DiFX operator. These
tests are truly only needed to support the path to Commissioning the VLBI capability. It is expected
that a qualified DiFX expert is available to perform the correlation and to analyze the results.

Details on DiFX including some documentation, may be found at the wiki for the software
project, http://cira.ivec.org/dokuwiki/doku.php/difx/start.

For the purposes of ALMA testing, a top-level script, corel_alma.sh is written to allow correla-
tion of specific scans which must be configured through a supplementary script/file corel_params.sh
(which is itself usually a symbolic link to one of several files in the ∼ oper/bmr area).

6.5 Science Scripts

For completeness, we mention several scripts here that are used in the development and exercise
of the complete VLBI system.

When the control system is active, the VLBI Observing Mode (VOM) is run out of (python)
scripts stored in /groups/science/scripts/APP. Since interfaces or capabilities have changed
through the development process, there are frozen copies tied to various releases. However, as of
R2014.4, there are three scripts that are relevant to hardware testing, described in the following
subsections. The Software Operations Regression test suite for VLBI uses these for its weekly
regression test of the APP functionality, https://ictwiki.alma.cl/twiki/bin/view/SoftOps/
WeeklyRegTestVLBI.

6.5.1 VLBIRecorderSetup.py

This script assumes all four recorders are present with working modules and that the OFLS
fibers are connected nominally. It then issues the commands to cplane to prepare the recorders
for normal operations and verifies that cplane has implemented these commands.

6.5.2 VLBITestObs.py

This script launches a VLBI test observation. It has command line flags to set a (prodigious)
number of options. The essential ones select the receiver band and antennas to designate for special
purposes. Use the --help argument for more details.

6.5.3 VLBITestAdj.py

This script is intended to make (test) adjustments to the VOM while it is operating. The
principal use of this is to remove or add antennas to the set used for phasing.

http://cira.ivec.org/dokuwiki/doku.php/difx/start
https://ictwiki.alma.cl/twiki/bin/view/SoftOps/WeeklyRegTestVLBI
https://ictwiki.alma.cl/twiki/bin/view/SoftOps/WeeklyRegTestVLBI

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 24 of 28

6.5.4 ripVLBIlog.py

ALMA software components log their data to a variety of sources while running, and also to
a common Java logging facility which creates a (rather large) XML file after some minutes of
operation. These logs are periodically gathered and made available to a web site (ordered by time)
http://computing-logs.aiv.alma.cl.

This script is designed to extract the specific logs from VLBITestObs.py or similar sources and
provide them as an ASCII file, rather than requiring the user to load the XML into some other
tool.

http://computing-logs.aiv.alma.cl

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 25 of 28

Chapter 7

Specific Test Descriptions

7.1 General

Prior to any test session, you should:

• review the general health of the recorder

• restart cplane/dplane

• verify that sufficient disk space exists in ∼ oper/and on the modules

Following every test session, you should:

• leave the recorder in a usable state

• clean up temporary files

• offload data products

• write the report

7.2 Module Test

7.2.1 using doit

As this is primarily a test of the modules, rather than the recorder, it is sufficient (and easier)
to test using single input streams (8 Gbps) to a pair of modules. Two configurations are easy to
use:

peerpush.sh In this configuration a pair of recorders are cabled together. Each recorder can
generate packets using peer_push on one interface, and receive packets to record on the
other in a pair of modules. The route tables need to be adjusted so that the packets are
actually sent to the approprate interface (using ip neigh as explained by the scripts). This
is configured in the doit-*.sh script.

loopback.sh In this configuration, one recorder sends packets to itself via a cable from one net-
work interface to another. The route tables need to be adjusted to prevent the kernel from
routing packets via the loopback interface as described in the script. This is configured in the
doit-*.sh script.

Depending on the level of checking required, an environment variable chks can be set to a list
of test to run. In most cases it is sufficient (and faster) to check with chk which signals that only
scan_check should be used; but mark will turning on checking with mark_check and dqa with (you
guessed it) (dqa).

The test sequence is as follows:

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 26 of 28

environment preparation
export chks=chk,mark
run the test on a pair of 48TB modules for 12 hours, Axx is a label
./doit-4005.sh 48TB Axx 12
wait 12 hours & verify that the script ran to completion
tail m6t-m.*.log
verify the log files are present
ls -ltr out/* | tail
look for problems:
it=Axx
grep FAIL out/$it.scans
grep check out/$it.chk | grep -v 0.fail
remove the scan data
rm /mnt/disks/data/?/?/*.vdif
make sure nothing is hanging; if so, kill it.
ps x

If using peer_push.sh, you can test from two recorders simultaneously.

7.2.2 using hammer

For situations where (re)cabling is not desirable, the hammer.sh script is a simple way to test
a module. With modules inserted, e.g. :

hammer.sh size=40g slots=1234 purge=true

will launch the test. After enough time has gone by, you can plot the results with

hammerplot.sh logfiles ...

which uses gnuplot to generate a summary PNG plot.

7.3 Link Test and Packet Rate

Whenever a source of packets is present at the recorder, there are several methods that may be
used to verify that the ethernet link is present and that packets are being received.

7.3.1 ifconfig

The recorder network devices are brought up or taken down by the ifup and ifdown commands
which take as an argument the name of the ethernet device. (Typically these are eth2 through
eth5 for the four ports on the Miricom network card(s).) At boot time, the device statistics are
cleared and the interface status message is as follows:

$ ifconfig eth3
eth3 Link encap:Ethernet HWaddr 00:60:dd:44:b3:eb

inet addr:172.16.3.4 Bcast:172.16.3.255 Mask:255.255.255.0
UP BROADCAST MULTICAST MTU:9000 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:83

thereafter the various counters increment according to packets received. For normal ALMA PIC
operation, the packet rate is 125000 packets per second received. Occasionally the system may send
some network query packets (ICMP which affect TX; or, a human may cause it, e.g. if the interface
is “pinged”).

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 27 of 28

For convenience, one can use grep to see only the lines with “RX”, “TX” on them, as those are
the most important. If more precise timing is desired, the script byte-rate.py, mentioned above
in Section 6.2.2 can be used to put system-level timestamps on the packet counters.

7.3.2 interrupts

As shown in the preceding section, CPU! interrupts are assigned to each of the interfaces.
Statistics associated with these are available from the UNIX kernel via /proc/interrupts. A
readable version relevant to the 10 GbE interfaces may be obtained as follows:

$ cat /proc/interrupts | grep eth | tr -s ’ ’
84: 2 0 0 2901879475 0 0 0 0 0 0 0 0 PCI-MSI-edge eth3
86: 2 0 0 0 0 2931489631 0 0 0 0 0 0 PCI-MSI-edge eth5
$ cat /proc/interrupts | grep eth | tr -s ’ ’
84: 2 0 0 2903340143 0 0 0 0 0 0 0 0 PCI-MSI-edge eth3
86: 2 0 0 0 0 2933012445 0 0 0 0 0 0 PCI-MSI-edge eth5

Normally the iterrupts are assigned at boot to be placed on different CPU!s (one CPU! per
column above). The numbers increment with the number of interrupts which is proportional to the
number of packets received.

7.3.3 filled packets

When run at verbosity level 3 (dplane 3), the application provides additional information in
its output. The m6tester.sh application starts dplane in such a way that the log file name is
m6t-d-timetag.log.

In particular, one of the things logged is the insertion of filled packets into the data files written.
A simple grep for filled is sufficient to recover a per-recorder log of filled packets by data stream.

7.4 Multi-Quadrant ASUMMER Test

For some of the tests we conduct with the ASUMMER logic we would like to record the sums
with the PICs. In these tests, the source of the signal might be some programming of upstream
devices (e.g. TFBs ro DRX!s). The PICs themselves would commanded via the Engineering Port
(EP).

7.4.1 Multi-Stream Time Offsets

In normal operations, the Control system takes care of providing all Correlator cards with exact
times, and the VOM takes care to provide the PICs with VDIF headers that are synchronized to
ALMA time. When lower-level tests are conducted, however, it is impossible to manually command
all the PICs with the proper time when they are called upon to transmit packets via the EP.

When such tests are constructed, the timechk.sh script (Section 6.2.2) may be used to capture
the packet times and time-stamp them with the recoreder clock. Note that the recorders are NTP-
sycn’d to an error of at most a ms, and that the packet queues are not that deep (perhaps a few ms).
Thus a packet so stamped with have some gross offset (due to the crudity of the commanding—
perhaps as much as a minute) and some residual error that is only a few milliseconds.

By fitting the output of the script to a line for each PIC, it is possible to generate an average
timing solution. This average tends to converge to packets in the middle of the receive queue (which
is the same for all data streams). Thus the relative difference between these average timing solutions
is adequate to align the data for the VLBI correlator (i.e. , make a good guess for the “clock early”
parameter of the VEX input file presented to DiFX).

APP Mark6 Recorder
Test Procedures

Doc: ALMA-05.11.50.02-0001-A-PRO
Date: 2014-11-18
Page: 28 of 28

7.4.2 Analysis

A detailed explanation of the procedure for the analysis of such data sets is well beyond the
scope of this document. However, the ideas are relatively simple, and we can spend a few words here
to explain. In the general VLBI setup, the DiFX correlator is provided with data files containing
the recordings together with a wealth of meta-data describing the experiment (usually contained
within the VEX input file).

For the tests we have at ALMA most of this information is not necessary, as what we mostly
want to do is to correlate the data files in various combinations. A relatively easy way to do this is
to construct a temporary VEX, setup the correlation, and then examine the results using standard
VLBI analysis tools. The principal one here is called fourfit which, among other things which are
not relevant here, looks for the correlation peak and reports on the strength of the correlation.

7.5 Multi-Quadrant Science Correlations

When the Control system is available (R2014.4 or later), one may run a simulated VLBI obser-
vation using VLBITestObs.py (Section 6.5.2) according to the general instructions provided for the
regression test (Section 6.5). Depending on how that observation was set up, it may be possible to
make arrangements such that the signals presented to the several PICs should correlate in various
ways. When this is done, we may directly correlate the results as described in Section 7.4.2 without
needing to worry about the issues covered in Section 7.4.1.

That is to say, it is far easier to just run the simulated VLBI observation than it is to make all
the same arrangements using the only the low-level EP commands.

Aside from choosing a source (a bright quasar available at the target time of day), there are
four principal ways to run this test:

A all quadrants with the same frequency setup, but with a the same, single antenna. This directly
vets the VLBI backend, as the recorded signals should be highly correlated.

B all quadrants with the same frequency setup and same set of antennas to be phased. This is
useful to directly compare the processing in each quadrant. The results should be very similar,
but not identical.

C all quadrants with the same frequency setup and but with a different set of antennas in the
phased sum for each quadrant. This allows some checks of the phased-sum performance.

D as a normal observation.

	Change Record
	Introduction
	Purpose
	Scope
	Reference Documents
	Acronyms

	Operational Background
	VLBI Background
	Implementation
	Filesystem
	General Usage

	Installation
	Startup, Shutdown and Module Handling
	Startup
	Shutdown
	Module Removal
	Module Insertion
	Module Initialization
	Module Trouble-shooting
	Missing Disks
	Module Initialization Problems
	Other issues

	Housekeeping Parameters
	CCL Interface to Housekeeping

	Monitoring and Maintenance
	Mark6 Scripts and Programs
	Mark6 Components
	cplane
	dplane
	dboss
	dpstat
	gather
	gator
	dqa
	da-client
	M6_CC
	m6sensors.sh

	Development Scripts
	m6tester.sh
	miscellaneous supporting utilities
	module qualification
	evalpush.sh
	vdifuse

	``Doit'' and Friends
	DiFX
	Science Scripts
	VLBIRecorderSetup.py
	VLBITestObs.py
	VLBITestAdj.py
	ripVLBIlog.py

	Specific Test Descriptions
	General
	Module Test
	using doit
	using hammer

	Link Test and Packet Rate
	ifconfig
	interrupts
	filled packets

	Multi-Quadrant ASUMMER Test
	Multi-Stream Time Offsets
	Analysis

	Multi-Quadrant Science Correlations

