
1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

 Telephone: 781-981-5400

 Fax: 781-981-0590
October 10, 2014

TO: Distribution

FROM: Alan Whitney, Chester Ruszczyk

SUBJECT: Mark 6 Command Set (1.1)

Introduction

This memo documents the command set of Mark 6 program called cplane that controls VLBI data recording.

(Other software must be used to playback recorded data, though a subset of the commands documented in this

memo can be used for disk management).

Note the following with respect to the Mark 6 cplane command set:

1. Processing of all of the commands/queries expect adherence to the VSI-S communications protocol and

command/response syntax. cplane will also support remote procedure calls (RPCs).

2. Commands/queries are case insensitive.

3. Versions of program cplane with a revision date earlier than the date on this memo may not implement

all commands indicated in this memo or, in some cases, may implement them in a different way. The

revision log at the end of this document lists all such cases.

1. VSI-S Command, Query and Response Syntax

The following explanation of the VSI-S syntax may be useful in understanding the structure of commands,

queries and their respective responses. This explanation has been lifted directly from the VSI-S specification

(see http://vlbi.org/vsi/).

11 Command Syntax

Commands cause the system to take some action and are of the form

 <keyword> = <field 1> : <field 2> : …. ;

where <keyword> is a VSI-S command keyword. The number of fields may either be fixed or indefinite; fields

are separated by colons and terminated with a semi-colon. A field may be of type decimal integer, decimal real,

integer hex, character, literal ASCII or a VSI-format time code. White space between tokens in the command

line is ignored, however most character fields disallow embedded white space. For Field System compatibility,

field length is limited to 32 characters except for the ‘scan label’ (see Section 6), which is limited to 64

characters.

http://vlbi.org/vsi/

2

1.2 Command-Response Syntax

Each command elicits a response of the form

!<keyword> = < VSI return code > :

 <Mk6-specific return code> [: <Mk6-specific ASCII return info> : ..] ;

where

<keyword> is the command keyword

<VSI return code> is an ASCII integer as follows:

0 - action successfully completed

1 - action initiated or enabled, but not completed

2 - command not implemented or not relevant to this DTS

3 - syntax error

4 - error encountered during attempt to execute

5 - currently too busy to service request; try again later

6 - inconsistent or conflicting request

7 - no such keyword

8 - parameter error

<Mark6-specific return code> - Mark 6-specific ASCII return code

<Mark6-specific ASCII return info> - optional additional ASCII info relating to Mark 6 return code

1.3 Query and Query-Response Syntax

Queries return information about the system and are of the form

<keyword> ? <field 1> : <field 2> : …. ;

with a response of the form

!<keyword> ? <VSI return code> :

 [<Mk6-specific return code> [:<Mk6-specific ASCII return info> :] ..] ;

where

<VSI return code> is an ASCII integer as follows:

 0 - query successfully completed

 1 - action initiated or enabled, but not completed

 2 - query not implemented or not relevant to this DTS

 3 - syntax error

 4 - error encountered during attempt to execute query

 5 - currently too busy to service request; try again later

 6 - inconsistent or conflicting request

 7 - no such keyword

 8 - parameter error

 9 - indeterminate state

Note: A ‘blank’ in a returned query field indicates the value of the parameter is unknown.

A ‘?’ in a returned query field indicates that not only is the parameter unknown, but that some sort of

error condition likely exists.

3

1.4 Mk6-Specific Return Codes

Table 1 is a list of Mk6-specific return codes. The codes are separated into blocks by command name. The

codes and descriptions provide additional information for the VSI returned value.

Mk6 return

code

Command Description

2 Specified group not open

10-19 delete

20 execute Invalid Action

21 execute No filename provided

22 execute Inconsistent filename used for append/finish process

23 execute Duplicate filename

24 execute Invalid upload sequence

25 execute Attempted removal of non-existent xml file

30 group Attempted open of multiple groups

31 group Attempted open of incomplete group

32 group ‘unprotect’ not issued immediately before ‘erase’

33 group ‘auto’ option failed, only supports module types initialized

as scatter / gather and not RAID

34 group Attempted group open does not match subgroup defined in

‘input_stream’ configuration

40-49 gsm

50-59 gsm_mask

60 input_stream Invalid subgroup declaration (group already open)

61 input_stream Writing of subgroup meta data to disc failed

70-79 list?

80 m6cc m6cc configuration file not found

81 m6cc m6cc process not found

82 m6cc Attempted abort of process failed

83 m6cc Attempted abort of inactive process

90-99 mod_init

100-109 msg?

110 mstat Invalid ‘group_ref’

120-129 record

130-139 rtime

140 scan_check Failed to find all required data files

150-159 scan_info

160-169 status

170-179 sys_info

4

2. Input Data Streams

The standard Mark 6 system accepts up to four Ethernet data streams, one stream on each of

four (optical or copper) 10GigE connectors on the back of the Mark 6 system chassis. Each

data stream is typically a VDIF data stream (either single thread or multi-threaded). The Mark

6 can select any or all of these data stream for recording, up to limits of the capability of the

system (typically sustained 8 Gbps to two simultaneously operating modules or sustained 16

Gbps to four simultaneously operating modules).

3. Modules, Slots, Groups and Subgroups

Modules and Slot#’s

A Mark 6 module consists of 8 disks in a specially designed portable carrier. Each module is physically

identified by a permanent unique identifier (called Module Serial Number’ or ‘MSN’) printed on a barcode

label on the module front panel and can be plugged into a physical slot# in the Mark 6 system (slot#’s are 1 to 4

for a system with a single expansion chassis.

The slots in a Mark 6 system are numbered 1 to n, where n is the number of available slots; the slot#’s are

prominently labeled on the Mark 6 chassis (see Figure 1). Each Mark 6 system chassis and expansion chassis

accommodates two slots; a standard Mark 6 system has one system chassis and one expansion chassis for a total

of four slots, though some systems may be able to support addition expansion chassis.

Unlike Mark 5 systems, each Mark 6 module is connected to the Mark 6 controller by a pair of high-speed

serial-data cables, each supporting four disks. Each cable-pair is labeled with an associated slot#; color-coded

labels on connectors must be matched during connection to the module. Both data-cables must be connected to

the module in the associated slot# before the keyswitch is turned to ‘on’, which applies power to the module;

modules will be self-discovered by the Mark 6 as they come alive. Correspondingly, a module should be

physically removed only after the associated group is logically ‘unmounted’, the keyswitch is turned to ‘off’,

and the associated red LED turns off (after~8 seconds, allowing the disks to spindown before handling), and the

data cables are disconnected.

1 2

3 4

1 23 4

Figure 1: Schematic representation of a Mark 6 system with system chassis (top), cable-management tray (center), and expansion

chassis (bottom). Four disk modules are mounted with associated data cables attached to module front panels.

5

Groups

A group consists of one of more modules designated as a set of modules that act as a single unit for recording

and playback. The maximum number of modules in a group is equal to the number of slots available in the

particular Mark 6 system (typically 2 or 4 modules, though some systems may accommodate more).

A new group may be created only from newly initialized modules, each of which has undergone an

‘initialization procedure’ that returns all of its disks to a preset condition. In order to create a new group, all the

initialized constituent modules must be simultaneously mounted; the group is formed by designating the slot#’s

of the modules to be included in the group (subsequent mounting of the disks in a group may be to other

slot#’s), or by asking the Mark 6 to create a group from n available qualified modules.

Once a set of modules is designated as a group, that set of modules acts as a single unit and is normally

inseparable until the constituent modules are individually re-initialized – unless special actions are taken to

divide a group into one or more subgroups (see Subgroups section below).

Group References

Multiple groups of modules may be simultaneously mounted on a Mark 6 system up to the limit of the number

of available slots. In order to distinguish simultaneously mounted groups, each group is assigned a group

reference (or group_ref) consisting of an unordered set of digits corresponding to the slot#’s of the constituent

modules (e.g. ‘3’ ‘12’ or ‘314’ or ‘1234’ for groups of 1, 2, 3 and 4 modules, respectively). Note that the group

reference will change accordingly if a group of modules is subsequently remounted to a different set of slots in

the same or another Mark 6 system. Only a single group may be ‘open’ for recording at any given time.

Normally, data from all of the active input data streams are recorded across all the disks in a group.

Subgroups

In some situations it may be desirable to separate a group into two or more subgroups in order to physically

segregate data from different physical Ethernet input data streams so that they are recorded to separate module

subsets. For instance, for correlator efficiency reasons, it may be desirable to separate right and left polarization

data so that each polarization is recorded on a subset of modules within a defined group. For illustration,

consider a case where left-polarization data arrive on Mark 6 Ethernet inputs 1&2 and right-polarization data

arrive on inputs 3&4, and it is desired that the right-pol and left-pol data be recorded to separate subgroups of

modules within four-module group ‘1234’. By defining subgroups ‘12’ and ‘34’ and associating Ethernet

inputs 1&2 with subgroup ‘12’ and Ethernet inputs 3&4 with subgroup ‘34’, the left-pol and right-pol data are

directed to separate pairs of disk modules. On playback at the correlator, the left-pol and right-pol data can

each be treated as separate data sets that can independently re-played, resulting in more correlator efficiency (in

some circumstances) than if the right-pol and left-pol data were mixed across all four modules of the group.

4. Scan names, Scan Labels and Linux filenames

cplane defines a ‘scan’ as a continuously recorded set of data. Each scan is identified by a scan name,

experiment name and station code, which are normally derived from the information in the associated VEX file

used in the scheduling of the experiment (see http://www.vlbi.org/vex)

The filename format for a file containing data from a single scan is typically

 <exp name>_<station code>_<scan name>.<file type>

where

<exp name> - experiment name; max 16 chars (consistent with current limit)

<station code> - standard 2-character ASCII station code, or decimal numeric value corresponding to 16-bit

numeric station code (see VDIF specification at http://www.vlbi.org for clarification).

<scan name> - assigned scan name (derived from VEX file or other source); max 16 chars

http://www.vlbi.org/vex
http://www.vlbi.org/

6

<file type> - identifies high-level data format within file (for example: ‘vdif’ and ‘m5b’ for VDIF and

Mark5B data formats, respectively)

Maximum scan-label length, including embedded underscores and possible scan-name suffix character, is 50

characters. <exp name>, <stn code> and <scan name> may contain only standard alpha-numeric characters,

except ‘+’, ‘-‘ and ‘.’ characters may also be used in <scan name>. All fields are case sensitive. No white

space is allowed in any of these subfields. Lower-case characters in all subfields are preferred. An example

Mark 6 filename is:

grf103_ef_scan123.vdif

In actuality, during the recording of a scan, the Mark 6 writes a single standard Linux file to each disk in the

active group and assigns system-specific unique filenames to each of these files that are different than the

prescribed Mark 6 filename. The Mark 6 keeps track of the correspondence between these filenames and the

Mark 6 filename through separate auxiliary files maintained on the data disks; in this way, the group of

individual files that comprise a Mark 6 file may be managed and referred to by the Mark 6 filename.

5. Command set overview

The Mark 6 set of commands and queries is designed to be operationally straightforward, as well as to provide

some diagnostic information needed to solve problems when they arise. There are only four top-level

commands necessary to control the Mark 6 system; seven queries are available to gather various types of

information, including diagnostic information to help isolate some types of problems, particularly the

identification of ‘slow’ disks.

Commands

input_stream: Each ‘input_stream’ command specifies the physical 10GigE port to which the stream is

connected, the data format (VDIF, Mark5B, etc) of the packet payloads, an ASCII label that is used to identify

the datastream, and the IP/MAC source address for packet filtering (if necessary). Up to four data streams of up

to 4Gbps each or two data streams of up to 8Gbps each may be defined. Packet serial number (PSN) checking

has now been implemented please see command for details on how to configure or disable this feature.

mod_init: ‘Initializes’ a disk module by erasing all data and readies it to be assigned to a group.

group: The ‘group’ command is used to manage groups of modules, as follows:

 ‘auto’ - create a new group of n modules from the pool of qualified available modules

 ‘new’ - create a new group from a set of specified modules (by slot#)

 ‘mount’ – mount a group of modules

 ‘open’ – ‘open’ a specified group to enable it for recording

 ‘close’ – ‘close’ a specified group to recording, but may be later re-opened

 ‘protect’ –prevent further recording to a specified group until ‘unprotected’

 ‘unprotect’ – designate a specified group as available for recording, but does not ‘open’ for recording

 ‘erase’ – erase all data from a specified group

 ‘unmount’ – prepare a specified group for physical removal of associated modules

record: Turn scan recording on/off or specify a start time and duration. Each scan is labeled with a unique scan

name, the experiment name and station name.

7

Queries

A variety of queries are available to ascertain the status and health of the system, and to help provide some

limited diagnostic information as necessary:

disk_info: Provides disk-by-disk module information about serial#, model, manufacturer, temperature, storage

capacity, and amount of storage currently used; very useful for locating slow or dead disks.

DTS_id: Retrieves brief system information, and is compatible with previous Mark5 command sets.

group_members: Retrieves detailed group/subgroup information associated with any mounted module, even if

all members of a group/subgroup are not mounted.

list: Lists all scans recorded to a specified group that can be accessed for reading.

msg: Get ASCII message associated with cplane return code

mstat: Provides module properties and status by slot#, group, or all mounted modules. Properties include slot#,

associated group (if any), extended-MSN, #disks discovered, #disks registered at initialization, total module

storage and amount used. Status of each specified module is shown as ‘recording’, ‘open’, ‘closed’, ‘initialized’

‘unknown’, etc., as well as ‘unprotected’ or ‘protected’ as appropriate. Also returned are the MSN(s) for any

missing (i.e. unmounted) module(s) of an incomplete group, allowing missing modules to be quickly identified.

rtime: Returns amount of recording time at a specified data rate available on the currently open group. Before

issuing a ‘record’ command, the Field System can check if space is available and take appropriate action as

needed to identify a new available group.

scan_check: Randomly reads a small portion of the last-recorded scan (default) or specified scan and reports

such information as scan#, scan label, #data streams and corresponding stream labels, data format, duration of

recording, total storage used, average data rate, and amount of missing data.

scan_info: Returns general information about the last-recorded scan (default) or specified scan without actually

reading any of the data of the scan. Reports such things as Mark 6 system serial#, scan#, scan label, current

status (pending, recording, flushing buffers, complete), start time, duration, and #data streams.

status: Retrieve detailed Mark 6 system status

sys_info: Returns general system information such as Mark 6 system serial#, OS type and revision, cplane

version, command set revision, available RAM, max number data disks supported, #slots in system, #input ports

and port reference names.

msg: Retrieves (if available) the ASCII message associated with a specified cplane error return code

8

6. cplane Command/Query Summary (by Category)

6.1 System Setup and operation

delete p. 9 Delete recorded scan(s) from module group

execute p. 12 Upload XML command file (NYI)

group p. 14 Manage module groups

input_stream p. 19 Define input data stream(s)

m6cc p. 22 Execute uploaded XML command file (NYI)

mod_init p. 21 Initialize a disk module

record p. 27 Turn recording on|off

6.2 Status and information queries

disk_info? p. 10 Get information about individual disks in a module

DTS_id? p. 11 Get brief system information (backwards compatible with Mark 5 ‘DTS_id?’ query

group_members? p. 15 Returns group/sub-group information associated with module in specified <slot#>

group info? p. 16 Returns group/sub-group information associated with module in specified <slot#>

list? p. 21 List scans recorded on mounted group

msg? p. 25 Get ASCII message associated with cplane return code

mstat? p. 26 Get module status

rtime? p. 30 Get remaining record time on open group

scan_check? p. 31 Quick check of data in recorded scan (NYI)

scan_info? p. 33 Get summary information for recorded scan (NYI)

status? p. 34 Get detailed Mark 6 system status

sys_info? p. 35 Get Mark 6 configuration details

6.3 Processing-status indicators requested by NRAO

gsm p. 15 Set/get Group State Mask (GSM); (NRAO-specific command)

gsm_mask p. 18 Set mask to enable changes in GSM; (NRAO-specific command)

7. cplane Command Set Details

This section contains a complete description of all cplane commands/queries in alphabetical order.

9

delete – Delete recorded scan(s) from group [command list]
Command syntax: delete = <scan>;

Command response: !delete = <return code> : <cplane return code> ;

Query syntax: delete?;

Query response: !delete? <return code> : <cplane return code> : <last scan deleted> ;

Purpose: Delete a scan from an active module

Query parameters:
Parameter Type Allowed values Default Comments

<scan> char scan name Delete specified scan from mounted group (see Notes 1 & 2)

Query response parameters:

Parameter Type Values Comments

<scan> char - Last scan removed.

Notes:

1. Unlike previous version of Mark5 that recorded data sequentially, the Mark6 allows the deletion of any scan; the released space may be used for

subsequent recording. Note, however, that depending upon the physical pattern of deleted data on member disks, maximum subsequent re-recording

data rate may be somewhat diminished.

2. Group must be ‘open’ and ‘unprotected’.

3. To erase all scans in a group, use the ‘group=erase’ command.

4. An extension in planned to allow deletion of multiple scans through a ‘wild-card’ specification of <scan>.

d
elete

d

elete

10

disk_info – Get disk information about individual disks in a module (query only) [command list]

Query syntax: disk_info? <info_type> : <slot#> ;

Query response: !disk_size? <return code> : <cplane return code> : <info type> : <slot#> : <eMSN>

: <#discovered disks> : <#registered disks> : <#disks> : <disk1 info> : …. : <diskn info> ;

Purpose: Get information about individual disks in a specified module

Query parameters:
Parameter Type Allowed values Default Comments

<info_type> char serial |

model |

vendor |
usage |

size |
temp

usage

‘serial’ – disk serial#’s

‘model’ – disk model #’s

‘vendor’ – vendor/manufacturer
‘usage’ – disk usage in GB

‘size’ – disk sizes in GB
‘temp’ – disk temperature in degC

<slot#> int available

slot#’s
- slot# - return info on module in specified slot#

Query response parameters:

Parameter Type Values Comments

<info_type> char - Information type being returned

<slot#> int 1-9 Module slot#

<eMSN> char - Extended-MSN of first (and perhaps only) module in group

<#discovered disks> int 1-9 #disks discovered in mounted module

<#registered disks> int 1-9 #disks registered at initialization

The following is repeated for each registered disk in module; order of disk information is always identical to order of serial number query

<diskx info> - - Information of type requested by <info_type>:

‘serial’ – disk serial# at initialization; preceded by ‘-‘ if disk is missing/dead (see Notes 1 and 2)
‘model’ – disk model # at initialization (see Note 3)

‘vendor – disk vendor (WD, SS, HT, SG, etc)

‘usage’ – current disk usage in GB (see Notes 3 and 4); null if unavailable
‘size’ – disk size in GB at initialization (see Note 3)

‘temp’ – current disk temperature in degC; null if unavailable

Notes:

1. At module initialization, the serial#’s, model#’s and disk sizes of all disks in a module are written to each disk in the module; this information is then

accessible even if one or more of the original disks fail (as long as at least one disk in the module is still OK).

2. For any undiscovered disks (missing/dead), the corresponding reported serial number(s) is preceded by ‘-‘. This allows easy identification of missing/dead

disks by serial number within a module.

3. All disk information is listed in the same order and position as in ‘disks? serial’ query so that physical disks can associated with the query-return info.
4. The Mark 6 system writes to disks in a round-robin fashion, but if a disk is not ready to write when its turn comes around, Mark 6 skips over that disk and

writes to the next one instead. If this happens repeatedly to the same disk, it will accumulate noticeably less data than its properly operating neighbors.

Therefore, if an examination of the amount of data recorded on individual disks across a module reveals significant disparity, one or more slow and/or

improperly functioning disks should be suspected. A ‘disks? serial;’ query may be used to identify corresponding physical disks.

d
isk

_
in

fo

d
isk

_
in

fo

11

DTS_id – Get brief system information (query only) [command list]

Query syntax: DTS_id? ;

Query response: !DTS_id ? <return code> : <system type> : <software version number> : <serial number> : <command set

revision>;

Purpose: System info query backwards compatible with Mark 5 system

Monitor-only parameters:

Parameter Type Values Comments

<system type> char Mark6

<software version

number>

char Version number for current version of cplane

<serial number> ASCII System serial number; generally is in the form ‘mark6-xxxx’ where xxxx is the system serial number (see
Note 1)

<command set revision> char Mark 6 command set revision level corresponding to this software release (e.g., ‘3.0.4’)

Notes:

1. The ‘DTS_id?’ query provides legacy support for the same command on the Mark 5 systems, providing a common query to allow the user to distinguish

between a Mark 5 and Mark 6 system.

2. The Serial number is of the format Mark6-XXXX, but if an expansion chassis is connected and the serial number of the expansion chassis is set the output of

the serial number will be Mark6-XXXX-YYYY. Where XXXX is the main Mark6 serial number and YYY is the expansion chassis serial number if present.

D
T

S
_

id

D
T

S
_

id

12

execute – Upload / remove an XML file to Mark 6 and remote restart of application [command list]

Command syntax: execute = <action>:<filename>:[<data>];

Command response: !execute = <return code> : <cplane return code> ;

Query syntax: execute?[<action>]:[<type>];

Query response: !execute? <return code> : <cplane return code> : <action>:[<file>]:[<type>] ;

Purpose: To provide an interface to upload and remove an XML schedule file from the Mark 6, and a method for remote control of

cplane/dplane applications and system.

Query parameters:
Parameter Type Allowed values Default Comments

<action> char upload |

append |
finish|

delete |

restart |

reboot

- ‘upload’ – name to be assigned to uploaded xml schedule file and includes first block of data.

See Note 2, 6

‘append’ – append data to schedule file. See Note 3, 6

‘finish’ – last block of data; write file to disk. See Note 4, 6

‘delete’ - delete xml filename . See Note 5, 6

‘restart’ - restart the cplane /dplan e software remotely . See Note 7

‘reboot’ - ability to reboot the system remotely. See Note 8

<filename> char file.ext |

last |

clean

- Name of file being uploaded and written to or removed from the OS disk

‘last’ - Used with restart / reboot action to place the Mark6 application in the last configured

state, stored in xml for persistency.

‘clean’ - Used with restart / reboot action to place the Mark6 application in a unconfigured

state.

<data> ASCII - The data field can be up to

Query response parameters:

Parameter Type Values Comments

<action> char uploading |

finished |

error |

sys_info

-

‘uploading’ – presently uploading an xml schedule file,

‘finished’ – successfully uploaded an xml schedule file,

‘error’ – file did not upload successfully

‘sysinfo’ - alma script to gather additional information on system state

‘-‘ - inactive

<filename> char Name of file being uploaded and written to OS disk

<type> char alma Command being executed is ALMA specific

Notes:

1. The ‘execute’ command transmits, piece by piece, an XML ASCII file (which may, for example, be an xml-based schedule or configuration file created from

VEX) to a Mark 6 through a VSI-S connection. This file may then be subsequently executed using the ‘mk6cc’ to initiate. Additional <actions> may be

added in the future.

2. The ‘upload’ option specifies a filename to be created and initiates the upload process, which transfers the file piece by piece through individual VSI-S

transfers.

3. An ‘append’ action appends to the file; there is no restriction on the number of ‘append’ actions that can be initiated after an ‘upload’ is initiated.

4. A ‘finish’ must be issued to close the process, indicating the last block of data and causing the specified file to be written.

ex
ecu

te

ex
ecu

te

13

5. The ‘delete’ command will only remove xml files and no other files or extensions

6. Errors will be returned if :

a. ‘uploads’ is initiated, with the state not ‘null’ or ‘finished’;

b. ‘append’ is initiated with the previous state not being upload on the receipt of the first command and all subsequent states being ‘upload’;

c. ‘finish’ issued with the prior state being ‘upload’ or ‘append’

d. ‘delete’ issued while M6CC is executing filename.

7. A ‘restart’ command will restart the cplane / dplane application. The last or clean states set in filename, specifies if the service comes up in the previous

configured state or a unconfigued state.

8. A ‘reboot’ command will cleanly shut down the cplane / dplane application and reboot the Mark6 system. The last or clean states set in filename specifies if

the service comes up in the previous configured state or a unconfigued state.

ex
ecu

te

ex
ecu

te

14

group – Manage module groups [command list]

Command syntax: group = <action> : <param> ;

Command response: !group = <return code> : <cplane return code> : <group_ref >;

Query syntax: group? ;

Query response: !group ? <return code> : <cplane return code>: <group1> : <group2 > [: …] ;

Purpose: Manage module groups.

Command parameters:

Parameter Type Allowed values Default Comments

<action> char auto |

new |
mount |

open |

close |
protect |

unprotect |

erase |
unmount

- auto – create a group from available eligible modules

new – create a group from specified module(s)
mount – mount a group of modules

open – open a group for recording

close – close the open group, if any
protect – write-protect a group; automatically ‘closes’ group

unprotect – write-enable a group

erase – erase all data (must be preceded immediately by and unconditionally by ‘unprotect’ command)
unmount – logically unmount a group in preparation for physical removal

<param> int See comments - For ‘auto’ – #modules from which to create new group of modules (slot#’s unspecified).

For ‘new’ – group_ref of new group of modules (e.g. ‘12’, ‘1234’, etc.)

For ‘mount’ – group_ref of new group of modules (e.g. ‘12’, ‘1234’, etc.)
For ‘open’ – group_ref to be opened for recording (e.g. ‘12’ for group with modules in slot#s 1 & 2).

For ‘close’ – null

For ‘protect’ – group_ref to be write-protected.
For ‘unprotect’ – group_ref to be ‘unprotected’ (i.e. write-enabled)

For ‘erase’ – group_ref to be erased

For ‘unmount’ - slot# or group_ref to be physically unmounted; error if attempt to unmount an open group

Query response parameters:

Parameter Type Values Comments

<group_ref> int #modules |

group_ref

#modules – For ‘auto’ create

group_ref – For an existing group, group_ref must include all modules in group; order of slot#’s in group_ref is

irrelevant (i.e. ‘12’ is equivalent to ‘21’)

Rules:

a. A new group of one or more modules can only be assembled from initialized (i.e. empty, unprotected) module(s).

b. A successfully created new group will be automatically ‘mounted’.

c. Once created, a group of n modules is referenced by an n-digit number group_ref with the module slot#’s as unordered digits (e.g. ‘3’, ‘12’,‘314’,1234’).

d. Only one group may be ‘open’ at any given time.

e. A successful ‘protect’ command automatically closes the affected group, but leaves the group available for reading (such as ‘scan_check’).

f. A ‘protected’ group must be ‘unprotected’ before it can be opened for recording.

g. An ‘erase’ command must be immediately and unconditionally preceded by an ‘unprotect’ command (even if the group is already ‘unprotected’).

h. A ‘unmount’ command ensures that the specified group is quiescent before physical removal of the associated modules; an attempt to ‘unmount’ a

currently open group will be rejected and cause an error return.

g
ro

u
p

g

ro
u

p

15

group_members – Get group eMSN members (query only) [command list]

Query syntax: group_members? <slot> ;

Query response: !group_members? <return code> : <cplane return code > : <eMSN of slot> : [<eMSN2>] : [<eMSN3>] :

[<eMSN4>] : [stream_label1 = eMSN + eMSN2] : [stream_label2 = eMSN + eMSN3];

Purpose: Get a group’s eMSN members by querying any module in the group / sub group

Monitor-only parameters:

Parameter Type Values Comments

<slot> int 1-4 Slot with module being queried

<eMSN of slot> ASCII The eMSN of the slot being queried

[<eMSN2>] ASCII Get additional groups eMSN members (see Note 1)

[<eMSN3>] ASCII Get additional groups third eMSN members if it exists

[<eMSN3>] ASCII Get additional groups forth eMSN members if it exists

[stream_label1 = eMSN +
MSN2]

ASCII Stream_label identifier and the eMSN of the slot being queried and the other eMSN2 contained in
subgroup (see Note 2)

[stream_label2 = eMSN +

MSN3]

ASCII Stream_label identifier and the eMSN of the slot being queried and the other eMSN3 contained in

subgroup

Notes:

 1. If the module belongs to a group of greater than 1, the additional eMSN will be displayed. If the module belongs to a group of one, only the slots

eMSN will be provided, or a “-“ if it is not initialized into a group yet.

 2. If the module in the slot being queried was a member of a subgroup for recording, the stream_label as defined by the input_stream command plus the

additional eMSNs that it are members are displayed. With the possibility of a module being assigned to a different subgroup with the input_stream command,

all unique subgroup references are displayed.

g
ro

u
p

_
m

em
b

ers
g

ro
u

p
_

m
em

b
ers

16

group_info – Provide group/sub-group information (query only) (TBD) [command list]

Query syntax: group_info? <slot#> ;

Query response: !group_info? <return code> : <cplane return code > : <group_ref> :

<slot#> : <sub-group_ref> : <eMSNa> :

<slot#> : <sub-group_ref)> : <eMSNb> : ……………;

Purpose: Returns group/sub-group information associated with module in specified <slot#>

Monitor-only parameters:

Parameter Type Values Comments

<group_ref> Group reference (e.g. ‘1234’) associated with specified slot#; unmounted modules within the associated

group will be assigned a proxy alphabetic slot# (i.e. ‘x’).
If module in the specified <slot#> is not part of a defined group, ‘-‘ is returned.

The following three parameters are repeated for each defined module in the group (even if not all modules in group are mounted):

<slot#> int 1-4 If mounted, slot#; if unmounted, proxy alphabetic character slot# (i.e. ‘x’)

<sub-group_ref> int Associated group/sub-group_ref (e.g. ‘12’ or ‘1x’); <null> if module is not part of a sub-group.

<eMSN> ASCII eMSN of <slot#>

Notes:

1. If the specified <slot#> belongs to a multi-module group, information about all modules in the group is returned. If the specified <slot#> is

not defined as a member of a group, ‘-‘ is returned.

2. Unmounted modules within the associated group are each assigned a unique proxy alphabetic slot# (i.e. ‘x’); for example, if only two modules

of a 4-module group are mounted, the returned <group_ref> might be ‘13xy’

3. If the associated group has been divided into sub-groups, the <sub-group_ref> associated with each <eMSN> in the group is returned (e.g. if

only one module of two-module subgroup is mounted, the returned <subgroup_ref> might be ‘ a ‘1x’).

4. Examples:

4-module group w/two 2-module subgroups; all modules mounted:

group_info? 1; ;

group_info? 0 : 0 : 1234 : 1 : 12 : <eMSNa> : 2 : 12 : <eMSNb> : 3 : 34 : <eMSNc> : 4 : 34 : <eMSNd>;

4-module group w/two 2-module subgroups; only 3 modules mounted:

group_info? 1; ;

group_info? 0 : 0 : 12x4 : 1 : 12 : <eMSNa> : 2 : 12 : <eMSNb> : x : x4 : <eMSNc> : 4 : x4 : <eMSNd>;

g
ro

u
p

_
in

fo

g
ro

u
p

_
in

fo

17

gsm –Set/get Group State Mask (NYI) [command list]

Command syntax: gsm = <group_ref> : <GSM> ;

Command response: !gsm = <return code> : <cplane return code> ;

Query syntax: gsm? <group_ref>;

Query response: !gsm? <return code> : <cplane return code> :

<group_ref> : <GSM> : <eMSN1 [: eMSN2 : ...] ;

Purpose: Set/get Group State Mask (GSM): logs the last significant group operation; this is an NRAO-specific command.

Command parameters:

Parameter Type Allowed values Default Comments

<group_ref> int group_ref -

<GSM> char recorded |

played | erased
|unknown |

error

none To be used only if automatically-set GSM parameter is to be overwritten.

Requires a preceding ‘vol_cmd= <protect>:<group_ref>; command.
Current value of GSM is ignored.

Query parameters

Parameter Type Allowed values Default Comments

<group_ref> int group_ref All groups Target group_ref

Query response parameters:

Parameter Type Values Comments

<group_ref> int group_ref Group reference

<GSM> char recorded |

played | erased |
unknown | error

recorded – last significant operation was record or a record-like function

played – last significant operation was playback
erased – last significant operation was erase

unknown – ?

error – error occurred; for example, a failure during one of the significant operations above

<eMSNn> char - eMSN(s) of modules in group

Notes:

5. Normally, the setting of the GSM parameter happens automatically whenever a record, play, or erase command is issued. However, the

<gsm=...> command is provided to manually overwrite the current GSM parameter. This command requires a preceding ‘protect=off’ and

affects only the active module. A ‘gsm=…” command ignores the current value of the GSM (see ‘gsm_mask’ command).

6. The GSM logs the last significant group operation. It is designed to distinguish between groups waiting to be correlated, have been correlated,

or have no data (erased) and ready to be recorded. The GSM is saved on all modules in the group in the same area as the permanent MSN.

The scan_check command does not affect GSM.

7. The ‘gsm’ and ‘gsm_mask’ commands were requested by NRAO and are designed primarily for use at their correlator.

8. If no modules are inserted, an error code 6 is returned.

g
sm

g

sm

18

gsm_mask – Set mask to enable changes in Group State Mask (NYI) [command list]

Command syntax: gsm_mask = <erase_mask_enable> : <play_mask_enable> : <record_mask_enable>;

Command response: !gsm_mask = <return code> : <cplane return code> ;

Query syntax: gsm_mask? ;

Query response: !gsm_mask? <return code> : <cplane return code> :

<erase_mask_enable> : <play_mask_enable> : <record_mask_enable> ;

Purpose: Set mask to enable changes in Group State mask (GSM); this is an NRAO-specific command.

Command parameters:

Parameter Type Allowed values Default Comments

<erase_mask_enable> int 0 | 1 1 0 – disable an erase operation from modifying the GSM.

1 – enable erase operation to modify the GSM.

<play_mask_enable> int 0 | 1 1 0 – disable a play operation from modifying the GSM.
1 – enable play operation to modify the GSM.

<record_mask_enable> int 0 | 1 1 0 – disable a record operation from modifying the GSM.

1 – enable record operation to modify the GSM.

Query parameters: None

Query response parameters:

Parameter Type Values Comments

<erase_mask_enable> int 0 | 1

<play_mask_enable> int 0 | 1

<record_mask_enable> int 0 | 1

Notes:

The GSM mask is intended to prevent accidental changes in the GSM. When a module is at a station, the GSM setting of 1:0:1 will

disable a play operation from modifying the GSM. Likewise, at a correlator one might want to disable the record_mask_enable.

erro
r

g
ro

u
p

g

sm
_

m
a

sk

g
sm

_
m

a
sk

19

input_stream – Define input data stream(s) [command list]
Command syntax: input_stream = <action> : [<stream_label>] : [<data_format>] : [<payload_size>]:[<payload_offset>]

:[<psn_offset>]:[<interface_ID>]: [<filter address>] :[<port>] : [<sub group ref>];

Command response: !packet = <return code> : <cplane return code> ;

Query syntax: input_stream? [<stream_label>] ;

Query response: !input_stream? <return code> : <cplane return code> :

 <stream_label1> : <data format1> : <payload_size1>:<payload_offset1>

:<psn_offset1>:<interface_ID1> : <filter address1> : port#1 : <sub group ref>:

 <stream_label2> : <data format2> : <payload_size2>:<payload_offset2>

:<psn_offset2>:<interface_ID2> : <filter address2> : <port#2> : <sub group> :…;

Purpose: Select input data stream

Command parameters:

Parameter Type Allowed values Default Comments

<action > char add |

delete |
commit

- ‘add’ - add a new input stream definition

‘delete’ – delete existing specified <stream_label>
‘commit’ – commit to the existing set of stream declarations. See Note 1, 2 & 3

<stream_label> char 16 chars max - User-specified label for input data stream (16 chars max); example ‘RDBE1’. See Note 4.

<data_format> char 4 chars max vdif ‘vdif’ – VDIF data format;

‘m5b’ – Mark 5B data format

Other data formats may be specified.

By default, a lower-case version of this parameter is used as the Mark 6 filename suffix unless
overridden by a specification in the ‘record=’ command. See Note 4.

<payload_size> int 64 < X < 9000 8224 The length of the payload received (bytes) to be recorded. See Note 5.

<payload_offset> int 0 <= X < 256 42 The headers of the received packet to exclude from the recorded data. See Note 6.

<psn_offset> int 0<= X < 9000 0 The offset from the start of the receive packet to the packet serial number and is disabled by

default. See Note 7.

< interface_ID > char 16 chars max - System-defined interface name (example: ‘ETH01’ for Ethernet port 1)

< filter address > int IP or MAC

address

- Specify exclusive IP or MAC address from which will be recorded:

 For IP connection: IP address (i.e. 192.68.1.34)
 For MAC connection: MAC address (i.e. 01.23.45.67.89.ab; must use ‘.’ as delimiter)

<port#> int port number - Destination port# to which data stream is addressed

<subgroup> int 1|2|3|4 - Sub-group (of open group) to which this data stream “interface_ID” should be written to. See

Note 10.

Query parameters:

Parameter Type Allowed values Default Comments

<stream label> int - All stream labels Specified stream label

Query response parameters:

Parameter Type Values Comments

in
p

u
t_

strea
m

in

p
u

t_
strea

m

20

<stream_label > char 16 chars max User-specified stream label (must be unique within set of ‘input_stream=’ commands

<data format> char 4 chars max Data format: ‘VDIF’ or ‘MARK5B’ currently allowed.

<payload_size> int 64 < X < 9000 The length of the payload received (bytes) to be recorded. See Note 7.

<payload_offset> int 0 <= X < 256 The headers of the received packet to exclude from the recorded data. See Note 8.

<psn_offset> int 0<= X < 9000 The offset from the start of the receive packet to the packet serial number. See Note 9.

< interface_ID > char 16 chars max System-defined Ethernet interface name

< filter address > IP or MAC

address

IP/MAC address for data filtering

<port#> int - Destination logical port#

[<group/sub group>] int 1|2|3|4 Subgroup to which data are to be written; default is entire group. See Note 10.

Notes:

1. Each ‘input_stream=’ command defines the data at one of the four Mark 6 Ethernet inputs and directs it to a group (default) or subgroup of

modules. The default recording mode scatters data more or less equally over all the modules in the specified group/subgroup.

2. Multiple input data streams may be sent to any group or subgroup, but each input stream may be sent to only one group/subgroup.

3. If <action> is ‘add’ or ‘delete’, the remaining optional parameters must be provided. If the action is ‘commit’, no other parameters are

required.

4. Data formats (‘VDIF’ or ‘MARK5B’) may not be mixed among ‘input_stream=’ statements; all data types MUST be the same. The

format written to the disk will be VDIF (MARK5B-format data is converted to VDIF format before recording).

5. <stream label> is the identifier for a specified 10GigE data stream; each input data stream must be assigned a unique stream label.

6. Each defined ‘input stream’ is recorded to a separate set of Linux files.

7. <payload_size> defines the packet length in bytes to be recorded after the headers are stripped off. This assumes that the first word of the

payload is the first work of a Mark5B or VDIF header.

8. <payload_offset> is the number of bytes into the received payload that should be removed and not written to disk. If a VDIF payload is

encapsulated directly into a layer 2 frame, the offset will be 0. If using VTP format, the UDP/IPv4/Sequence number should be accounted

for and skipped.

9. The <psn_offset> indicates the location of the packet serial number (PSN) to be compliant with VTP and also to guarantee the proper

ordering of data stored to disk. A value of “0” implies the data plane will not look for a PSN or guarantee order of the data. A non-zero

value indicates the byte offset position from the start of the payload received.

10. The slot#(s) specified in ‘group/subgroup’ must be members of an ‘open’ group (for example, open group ‘1234’ may be partitioned into

subgroups ‘12’ and ‘34’).

in
p

u
t_

strea
m

in

p
u

t_
strea

m

21

list – List scans recorded on a mounted group (query only) [command list]
Query syntax: list? [<group_ref>] ;

Query response: !list?<return code> : <cplane return code> : <group_ref> : <total_scans>:

 <scan#> : <scan1> : <length1>:<creation time1> : …

 <scan#> : <scann> : <lengthn>:<creation timen>;

Purpose: List scans recorded on specified group

Query parameters:

Parameter Type Allowed values Default Comments

<group_ref> Char - Active group module Lists the scans recorded on specified group. See Notes 1 &2 & 3

Query response parameters:

Parameter Type Values Comments

<group_ref > char 4 chars max Module group reference listing is valid for

<total_scans> int 32 bit length Total number of scans recorded on the disk module

<scan#> int 32 bit length Mark6-assigned sequential scan# within the group

<scanx> char 16 chars max Scan name

< length > int Length of the scan in Gbytes bytes

< creation time > ASCII Date when the scan was created in VEX time format ##y###d##h##m##s

Notes:

1. If recording is not currently active: A list of scans will be obtained by reading from the modules(s) of the requested group,

which may be open or closed.

2. If recording is active:

a. a ‘list’ request for a ‘closed’ group will unconditionally return with an error code ‘5’.

b. a ‘list’ request for an ‘open’ group will be serviced by listing the scans cached in memory.

3. If a subgroup of modules are mounted, and scans were recorded on those particular modules, a listing of the valid scans that exist will be

presented.

list
list

list

22

m6cc – Execute the mark6 command and control application [command list]

Command syntax: m6cc = <action>:<config_file>;

Command response: !m6cc = <return code> ;

Query syntax: m6cc? ;

Query response: !m6cc ? <return code> : <cplane return code>

 : <config_file> : <state> ;

Purpose: Execute the Mark6 command and control application using a specified XML configuration file describing actions.

Command parameters:

Parameter Type Allowed values Default Comments

<action> char execute|

abort

 ‘execute’ - process and execute the specified config file

‘abort’ - kill the processing of the config file.

<config_file> Ascii An existing configuration file uploaded to the Mark6.

Query response parameters: (returns information for most recently initialized module)

Parameter Type Allowed values Comments

<config_file> Ascii Name of the file being processed, or the last file processed.

<state> char active |

complete |

partial |

error |

inactive

‘active’ – a configuration file is being processed and executed.

‘complete’ – the configuration file was successfully processed through completion.

‘partial’ – the configuration file was processed and terminated before completion.

‘error’ – error condition exist e.g. the file does not exist.

‘inactive’ - no configuration file has been executed

Notes:

m
6

cc
m

6
cc

23

mod_init – Initialize a disk module and assign a Module Serial Number (MSN) [command list]

Command syntax: mod_init = <slot#> : <#disks> : <MSN> : [<type>] : [<new>];

Command response: !mod_init = <return code> ;

Query syntax: mod_init? ;

Query response: !mod_init ? <return code> : <cplane return code>

 : <slot#> : <eMSN1> : <#disks discovered> ;

Purpose: Initialize a disk module by assigning it a unique ‘permanent’ Module Serial Number (MSN).

Command parameters:

Parameter Type Allowed values Default Comments

<slot#> int 1-9 Physical slot# of module to be initialized

<#disks> int 1-16 - #disks installed in module. See Note 1

<MSN> char - Permanent 8-character ‘Module Serial Number’ to be assigned to the connected disk module

(example:‘MPI_0153’). MSN format rules are enforced; see Note 2. The module capacity and disk
manufacturer are extracted and appended to the MSN to create the ‘extended-MSN’ (‘eMSN’)

[example ‘MPI_0153/16/WD’); see Notes 1 and 3.

<type> char sg | raid sg The format structure that the disk module will be created in:

‘sg’ – scatter gather resilient format disk module

‘raid’ – Raid 0 formatted disk module

<new> char new | null null Required if MSN of previously initialized module is being changed. See Note 2.

Query response parameters: (returns information for most recently initialized module)

Parameter Type Allowed values Comments

<slot#> int 1-9 Physical slot#

<#disks discovered> int 1-16 #disks in associated module

<extended MSN> char - Example: ‘MPI_0153/16/4/WD’; see Notes 3 and 4.

Notes:

1. The ‘mod_init=..’ command is normally issued only when a module is first procured or assembled, when the disks are changed or

upgraded, or when a multi-module group is dissolved. All connected disks in the specified slot# will be initialized; all data on the

module will be erased. The number of disks specified must exactly match the number of disks discovered by the Mark 6 controller

in the specified slot#. An error will be returned if #disks specified are different from number of disks discovered by the Mark 6

controller.

m
o

d
_

in
it

m
o

d
_

in
it

24

2. For a module that has been previously initialized: Unless the ‘change’ parameter is specified, the specified MSN must match the

existing module MSN or the initialization request will fail. This procedure is intended to help prevent inadvertent changes to the

MSN.

3. The format of the Module Serial Number (‘MSN’ for short – see Note below) is enforced as follows:

MSN must be 8 characters in length with format ‘ownerID_serial#’ where:

a. ownerID – 2 to 5 upper-case alphabetic characters (A-Z). The ‘ownerID’ must be registered with Jon Romney at NRAO

(jromney@nrao.edu) to prevent duplicates. Numeric characters are not allowed. Any lower-case characters will

automatically be converted to upper case.

b. serial# - numeric Module Serial Number, with leading zeroes as necessary to make the MSN exactly 8 characters long;

minimum two digits, three recommended . Alphabetic characters are not allowed in the serial#.

Note: ‘MSN’ is equivalent to VSN or ‘Volume Serial Number’ in the Mark 5 world.

4. ‘Extended-MSN’ (‘eMSN’) is of the form ‘MSN/capacity(TB)/max data rate(Gbps)/disk manufacturer’. cplane queries the disks

to compute the capacity of the module in TB and the disk manufacturer (e.g. ‘WD’, ‘SG’, ‘HT’, ‘SS’, for Western Digital,

Seagate, Hitachi, Samsung, for example); if mixed-disk models, <disk type> will be set to ‘MX’; these fields are then appended to

the to create the e-MSN. Mixed disk models and sizes are supported by the Mark 6, but not encouraged, particularly mixed disk

sizes.

5. The replacement of any disk(s) in an initialized module requires re-initialization of the module with the ‘mod_init=’ command

before data can be recorded. All existing data will be lost.

m
o

d
_

in
it

m
o

d
_

in
it

mailto:jromney@nrao.edu

25

msg – Get ASCII message associated with cplane return code(query only) [command list]

Query syntax: msg? <cplane return code> ;

Query response: !msg ? <return code> : <cplane return code> : <cplane-specific ASCII message> ;

Purpose: Get ASCII error message associated with specified cplane return code

Query parameters:

Parameter Type Allowed

values

Default Comments

<cplane return code> int - - cplane numerical return code

Query response parameters:

Parameter Type Values Comments

<cplane return code> int <cplane return code>

<error message> literal

ASCII

 Associated ASCII error message, if any

Notes:
1. The ‘error?’ query is used to retrieve an explanation of cplane-specific return codes (usually errors).

2. <return code> 8 (parameter error) returned if specified <cplane return code> does not exist.

m
sg

m

sg

26

mstat – Get module status (query only) [command list]

Query syntax: mstat? [<type>];

Query response: !mstat? <return code> : <cplane return code> :

 <group_ref1> : <slot#> : <eMSN1> : <#disks discovered> : <#disks nominal> : <#GB remaining> :

 <#GB total> : <status1> : <status2> :<type>

 [: <group_ref2> : <slot#> : <eMSN2> : <#disks discovered> : <#disks nominal> : <#GB remaining> :

 <#GB total> : <status1> : <status2> : <type>]

 [:…] ;

Purpose: Get module status

Query parameters:

Parameter Type Allowed values Default Comments

<type of query>

int/

char

null | all

<slot#> |
<group_ref> |

open

open

all|null returns information on all mounted modules.

<slot#> returns information module in specified slot#.
group_ref or partial group_ref (i.e. one or more mounted modules of multi-module group)

‘open’ returns information on all modules in currently open group (if any).

Query response parameters Returns following information about specified group(s)

Parameter Type Values Comments

<group_ref> int int Standard group_ref if complete group is mounted (e.g. ‘2’ or ‘12’ or ‘1234’);

Trailing zero assigned for every ‘unmounted’ module of multi-module group
 (e.g. ‘10’ for two-module group associated with module in slot#1, but only module in slot #1 is mounted;

 ‘1400’ for 4-module group associated with modules in slots 1 & 4, but only two modules mounted)

Zero if module is not assigned to a group (i.e. <status1> is ‘initialized’ or ‘unknown’)

<slot#> int 0-9 Physical slot# for mounted module.
Zero for ‘unmounted’ module of multi-module group.

<eMSN> char - Extended Module Serial Number (see Notes for ‘mod_init’ command)

<#disks discovered> int - Number of disks in module discovered; zero if ‘missing’ module

<#disks registered> int - Number of disks registered

<#GB remaining> int #GB remaining unrecorded on group

<#GB total> int #GB total storage in group

(continued)

m
sta

t
m

sta
t

27

<status1> char recording |

open |

closed |

mounted |

incomplete |
unmounted |

initialized |

unknown

recording – associated group is recording (

open – associated group is complete and open

closed – associated group is closed

mounted – associated group is mounted

incomplete – associated group has one or more unmounted modules
unmounted – unmounted module of a multi-module group

initialized – initialized, empty, unprotected module unassigned to a group

unknown – status of module is unknown

<status2> char ready |
recording |

flushing |

protected |

unprotected |

null

ready – associated group is ready to record (<status1> must be ‘open’)
recording – associated group is recording (<status1> must be ‘open’)

flushing – associated group is flushing buffers to disks (<status1> must be ‘open’)

protected – associated group is protected (<status1> may be ‘closed’ or ‘incomplete’)

unprotected – associated group is unprotected, i.e. write enabled (<status1> may be ‘open’, ‘closed’, or ‘incomplete’)

null – applies to all ‘initialized’, ‘unmounted’ or ‘unknown’ modules

<type> char sg | raid The format of the disk module. scatter gather (sg) or raid0 (raid)

Notes:

1. Status of all mounted modules is returned, as well as information about unmounted modules in incomplete groups.

2. Every module within a group contains information about all modules in the group; this allows the ‘mstat’ command to return

complete identifying information for all unmounted modules within a group.

3. The information returned by the ‘mstat’ command is usefully presented in tabular form. The following table illustrates an example

(for illustrative purposes, shows more slots than are normally available):

Group Slot

eMSN #disks

found

#disks

registered

GB

(remaining)

GB

(total)

Status1 Status2 Type Comments

12 1 ABC_0450/8/4/WD 8 8 7800 8000 open unprotected sg Group 12 is ready to record.

12 2 ABC_0458/8/4/WD 8 8 7799 8000 open unprotected sg

- 3 XYZ00123 8 8 16000 16000 initialized (null) Available to be assigned to a group

- 4 XYZ00124 8 8 16000 16000 initialized (null) Available to be assigned to a group

56 5 QRS_0900/16/4/SS 8 8 3 16000 closed protected sg Group 56 is full, closed and protected, and may

be physically unmounted 56 6 QRS_0901/16/4/SS 8 8 4 16000 closed protected sg

7- 7 QRS_0902/16/4/SS 8 8 8765 16000 incomplete unprotected sg Slot 7 is part of an incompete 2-module group.

8 8 CDE_0321/16/4/HT 8 8 16000 16000 closed unprotected raid Single-module group. Full.

m
sta

t

m
sta

t

28

record – Turn recording on|off; assign scan label [command list]

Command syntax: record = <action> : [<duration>] :[<data_size>]: [<scan_name>] : [<experiment_ name>] : [<station_code>] ;

Command response: !record = <return code> : <cplane return code> ;

Query syntax: record? ;

Query response: !record ? <return code> : <cplane return code> : <status>: <group> : <scan number> : <scan name> ;

Purpose: Turn recording on|off or specify UT start time.

Command parameters:

Parameter Type Allowed

values

Default Comments

<action> char on |
 off |

start_time

 ‘on’ immediately starts recording;
‘off’ stops recording ; See Note 5

‘start_time’ specifies UT start time in VEX time format (##y##d##h##m##s)‘. e.g. 12y215d12h45m30s,

See Notes 1-4.

<duration> int seconds If specified, recording will stop after this amount of time; ‘record=off’ command may be used to stop
recording before specified duration is complete.

<data size> int GBytes - Size of the data packet expected to be recorded in this scan; used to judge whether sufficient space exists

on present ‘ready’ volume. See Note 3.

<scan_name> char 32 chars max Relevant only for ‘record=on’ command. If not specified, the current Mark 6 system UT time will be used

to create a scan name in the format ‘scan_xxxx’, where ‘xxxx’ is a Mark6 generated scan serial number

<experiment_name> char 8 chars max expxx Relevant only for ‘record=on’ command; once specified, <experiment name> will be remembered on

subsequent ‘record=on|time’ commands; ‘record=on|time’ with <experiment name> will reset default.

<station_code> char 8 chars max stnxx Relevant only for ‘record=on’ command; once specified, <station name> will be remembered on

subsequent ‘record=on|time’ commands; ‘record=on|time’ with <station name> will reset default.

Query parameters: None

Query response parameters:

Parameter Type Values Comments

<status> char off |

pending |

recording |
flushing

‘off’ – recording currently inactive

‘pending’ – awaiting timed start

‘recording’ – capturing data to RAM and recording to disk
‘flushing’ – flushing RAM buffers to disk after data capture has stopped

<group> int Group to which current recording (or last recording) was made

<scan number> int Mark6-assigned scan serial number within group

<scan name> char Scan name –see Section 6 for definition of scan name.

reco
rd

reco

rd

29

Notes:

1. Recording always takes place to the ‘open’ group.

2. VEX time format is ‘##y###d##h##m##s’, but may be truncated from left or right as long as it is unambiguous at the time it is issued (e.g.

‘30m10.5s’ will start at specified time within the next hour).

3. While waiting for ‘time’ recording to start, status of ‘open’ group is not allowed to change.

4. An error will be returned if specified ‘start time’ plus the ‘duration’ has passed; If the ‘start time’ has passed, but the ‘end time’ has not, the

recording will capture data from when the command is received (on an integer second), till the ‘end time’ or when ‘record=off’ is issued.

5. A ‘record=<off>’ command will disable ‘start_time’ recording if issued before ‘start_time’; If issued during an active recording, the data

received up till that time will be captured; If issued after the ‘end_time’ and error will be returned.

6. During recording, commands to the system that may interfere with the recording capability of the disks (such as queries for ‘disk_info?’,

‘scan_info’, ‘scan_check’, etc) may be rejected.

7. If the <data size> parameter is specified, cplane will first check the present ‘open’ group for sufficient space. If <data size> is specified and

insufficient space is available, an error will be returned. During or after recording (until the next scan is started), the ‘scan_info?’ query may

be used to return information about the scan

8. For recording performance reasons, once a scan is recorded, there is no mechanism to delete it (without initializing modules within group).

reco
rd

reco

rd

30

rtime – Get remaining recording time on open group (query only) [command list]

Query syntax: rtime? [<data rate>];

Query response: !rtime ? <return code> : <cplane return code> :

<group> : <data rate> : <remaining time> : <GB remaining> : <GB total> ;

Purpose: Get remaining recording time of open group for specified data rate.

Query parameters:

Parameter Type Allowed values Default Comments

<data rate> real Mbps - Usually will be data rate of next scan to be recorded

Query response parameters:

Parameter Type Values Default Comments

<data rate> real Gbps - Recording rate assumed in calculation of <remaining time>

<remaining time> int seconds - Approximate remaining record time for currently ‘open’ group at specified data rate.

<GB remaining> int GB GB remaining on open group

<GB total storage> int GB GB total available storage on open group

Notes:
1. If an ‘rtime?’ query is issued during recording and <data rate> is not specified, the Mark 6 system estimates the actual aggregate recording data rate and

returns the <remaining time> estimate accordingly.

rtim
e

rtim
e

31

scan_check – Quick check of recorded data (query only) (NYI) [command list]

Query syntax: scan_check? [<scan name|scan#>] : [<group_ref>] ;

Query response: !scan_check ? <return code> : <cplane return code>: <group_ref> : <scan#> : <scan label> : <#streams>

: <stream label1> : <status1> : <data format1> : <start time1> : <duration1> : <datasize1> : <stream rate1> : <missing bytes1>

: <stream label2> : <status2> : <data format2> : <start time2> : <duration2> : <datasize2> : <stream rate2> : <missing bytes2>

: <stream labeln> :…: <missing bytesn>] ;

Purpose: Quick-look check of recorded data from completed scan

Query parameters:

Parameter Type Allowed

values

Default Comments

<scan name|scan#> char/int - Last recorded scan See Note 2.

<group_ref> int - open group group_ref or partial group_ref (i.e. one or more mounted modules of multi-module group)

Query response parameters:

Parameter Type Values Comments

<group_ref> int - Group reference

<scan#> int Mark6-assigned sequential scan# within the group

<scan label> char - Scan label (see Section 6)

<#streams> int - #streams of recorded data

<stream labelx> char - Stream label as defined by ‘input_stream=’ command

<statusx> char OK |

time? |
data?

‘OK’ – data frames and data appear to be normal

‘time?’ – error decoding time in data frames
‘data? – sampled data do not appear to be statistically random; see Note 5

<data formatx> char - Data format (‘vdif’, ‘m5b’, etc)

<start timex> time UT time Time tag decoded from first data-frame in file, in format ##y###d##h##m##ss

<durationx> time seconds Decoded time interval between first and last data-frames of scan

<data sizex> real GB Total data recorded (GB) from data 31tream; see Note 6

<stream data ratex> real Gbps Inferred stream data rate (Gbps) based on starting/ending time tags and <file size>; see Note 6.

<#missing bytes> int int #bytes missing from recording

sca
n

_
ch

eck

sca
n

_
ch

eck

32

Notes:

1. ‘record?’ status must be ‘off’ when doing scan_check; attempting scan_check during recording will return an error.

2. ‘scan#’ is the Mark6-assigned sequential scan# within the group.

3. ‘group_ref’ may be a full group reference or partial group reference (i.e. one or more mounted modules of multi-module group)

4. <data format> is taken from scan metadata recorded in the group directory; supported suffixes are ‘vdif’ and ‘m5b’ (plugins may be developed

to support other data formats).

5. ‘scan_check’ examines a small amount of data near the scan start and stop points; the data are decoded according to the specified format.

6. Statistical randomness of data is based on a small sample of data at both beginning and end of scan; not authoritative, but should be looked at.

7. Mark 6 records entire Ethernet frames, which is taken into account in calculating <stream data rate>.

sca
n

_
ch

eck

sca
n

_
ch

eck

33

scan_info – Get scan information (query only) [command list]

Query syntax: scan_info? [<scan name|scan#>] : [<group_ref>] ;

Query response: !scan_info ? <return code> : <cplane return code> : <group_ref> : <scan#> : <scan label> :

<status> : <start time> : <duration> : <#data streams> : ,<system performance code> ;

Purpose: Get summary information on scan

Query parameters:

Parameter Type Allowed

values

Default Comments

<scan name|scan#> char/int - Last recorded scan See Note 2.

<group_ref> int - open group group_ref or partial group_ref (i.e. one or more mounted modules in multi-module group)

Query response parameters:

Parameter Type Values Comments

<group_ref> int - Group reference

<scan#> char - Mark6-assigned sequential scan# within the group

<scan label> int - Scan label (see Section 6)

<status> char recording |
pending |

flushing |

complete

‘recording’ – capturing data to RAM and recording to disk
‘pending’ – awaiting timed start

‘flushing’ – flushing RAM buffers to disk after data capture has stopped

‘compete’ – all data recorded to disk

<start time> time UT time Recording UT start time in format ‘##y###d###h##m##ss’, where ‘#’ is a digit.

<duration> int seconds Recording duration in seconds

<#data streams> int - # of data streams in scan; corresponds to # of files per disk (one file per data stream)

<system performance code> int - Code indicating system performance. See Note 3

Notes:
1. The ‘scan_info?’ may be rejected if the system is too busy during active recording.

2. ‘scan#’ is the Mark6-assigned sequential scan# within a group.

3. ‘quality code’ is intended to be a indication of the performance of the Mark 6 on the basis on cplane internal metrics; for example, excessive buffer overflow

or unequal distribution of data to disks (indicative of one or more ‘slow’ disks); actual codes and meanings TBD.

sca
n

_
in

fo

sca
n

_
in

fo

34

status – Get detailed Mark 6 system status (query only) [command list]

Query syntax: status? ;

Query response: !status ? <return code> : <cplane return code>: <status word> ;

Purpose: Get detailed Mark 6 system status

Query parameters: None

Query response parameters: (TBD by software author)

Parameter Type Values Comments

<status word> hex - Bit 0 – (0x0001) system ‘ready’

Bit 1 – (0x0002) error message(s) pending; (message may be appended); messages may be queued; error is

cleared by this command. See also ‘error?’ query
Bit 2 – (0x0004) one or more ‘delayed-completion’ commands are pending. Also set whenever any data-

 transfer activity, such as recording.
Bit 3 – (0x0008) one or more ‘delayed-completion’ queries are pending

Bit 4 – (0x0010) record ‘on’
Bit 5 – (0x0020) media full (recording halted)

Bit 6 - (0x0040) burst mode

Bit 7 - (0x0080) recording can’t keep up; some lost data

Bit 8 - (0x0100) dplane is operational

Bit 9 - (0x0200) dplane is configured to accept data
Bit 10 – (0x0400) Fill pattern was inserted into the scan due to out of order or missing packets received.

Only active is PSN checking is enabled.

Bit 11 – (0x0800) not used

Bit 12 – (0x1000) Bank 1 selected

Bit 13 – (0x2000) Bank 1 ready
Bit 14 – (0x4000) Bank 1 media full or faulty (not writable)

Bit 15 – (0x8000) Bank 1 write protected

Bit 16 – (0x10000) Bank 2 selected

Bit 17 – (0x20000) Bank 2 ready

Bit 18 – (0x40000) Bank 2 media full or faulty (not writable)
Bit 19 – (0x80000) Bank 2 write protected

Bit 20 – (0x100000) Bank 3 selected
Bit 21 – (0x200000) Bank 3 ready

Bit 22 – (0x400000) Bank 3 media full or faulty (not writable)

Bit 23 – (0x800000) Bank 3 write protected

Bit 24 – (0x1000000) Bank 4 selected

Bit 25 – (0x2000000) Bank 4 ready

Bit 26 – (0x4000000) Bank 4 media full or faulty (not writable)

Bit 27 – (0x8000000) Bank 4 write protected

sta
tu

s
sta

tu
s

35

sys_info – Get Mark 6 configuration details (query only) [command list]

Query syntax: sys_info? ;

Query response: !sys_info ? <return code> : <cplane return code> :

<system type> : <Mark 6 S/N> : <OS type/rev> : <cplane version number> :

<command set revision> : <available RAM> :<#data disks supported> :

<#Ethernet input ports> : <portref1> : <portspeed1>:<address1>:<state1> :…. : <portrefn> :

<portspeedn> ;

Purpose: Get Mark 6 configuration details

Query parameters: None

Query response parameters:

Parameter Type Values Comments

<system type> char Mark6

<Mark 6 serial number> char Assigned system serial number; generally in the form ‘Mark5-4xxx’

<OS type/revision> char example: ‘Ubuntu 10.10’

<cplane version number> char Version number of cplane

<command set revision> char Mark 6 DIM command set revision level corresponding to this software release (e.g. ‘1.0’)

<available RAM> int Available burst-mode RAM (GB)

<#data disk supported int max# data disks supported on system

<#Ethernet input ports> int #Ethernet ports available for data input

<portrefx> char Port reference name to be used in ‘input_stream” command (e.g. ‘eth0’)

<portspeedx> int 1 | 10 Nominal Ethernet speed (Gbps) (e.g. ‘1’ or ‘10’)

<address> ascii xx.xx.xx.xx IPv4 Address assigned to interface

<state> char up | down State if the network interface. See Note 1.

Notes:
1. If the Ethernet interface is down, the operator must log-in as root and configure and/or re-establish the Ethernet connection

sy
s_

in
fo

sy

s_
in

fo

