

# Installation and Test Plan of the Hydrogen Maser ALMA Phasing Project

# ALMA-05.11.21.01-0001-A-PLA

2014-04-10

| Prepared by:                | Organization Role:            | Date and Signature: |
|-----------------------------|-------------------------------|---------------------|
| Christoph Jacques           | NRAO                          |                     |
| Shep Doleman                | MIT - Haystack                |                     |
| Product Assurance Approval: | Organization Role:            | Date and Signature: |
| R. Treacy                   | APP Product Assurance Manager |                     |
| JAO Approval                | Organization Role:            | Date and Signature: |
| Michael Hecht               | APP Project Manager           |                     |



# **Change Record**

Doc N:

Date:

Page:

| Version | Date       | Affected section(s) | Author     | Reason/Initiation/Remarks              |
|---------|------------|---------------------|------------|----------------------------------------|
| A.1     | 2014-04-10 | All                 | C. Jacques | Initial draft                          |
| А       | 2014-10-28 | All                 | A. Caceres | Document number and format corrections |
|         |            |                     |            |                                        |

### **Table of Contents**

| 1. Description                                               | 3 |
|--------------------------------------------------------------|---|
| 1.1. Purpose                                                 | 3 |
| 1.2. Scope                                                   | 3 |
| 2. Related Documents and Drawings                            | 3 |
| 2.1. Applicable Documents                                    | 3 |
| 2.2. Interface Control Documents                             | 3 |
| 2.3. Test Report Documents                                   | 3 |
| 2.4. Abbreviations and Acronyms                              | 3 |
| 3. Installation Drawing (preliminary)                        | 4 |
| 4. Bill of Materials                                         | 4 |
| 5. Summary of Maser Requirements to be Verified and Accepted | 5 |
| 5.1. Technical Requirements                                  | 5 |
| 5.2. Project and IPT-level Technical Requirements            | 5 |
| 6. Verification Process                                      | 5 |
| 6.1. In-House Preliminary Verification and Acceptance (PAI)  | 5 |
| 6.2. On-Site Acceptance (PAS)                                | 6 |
| 6.3. Maser Integration and Test                              | 7 |
| 7. Preliminary task list                                     | 8 |
| In addition, OSF staff will need to arrange:                 | 8 |
| 8. Timeline, Tasks, Responsibilities                         | 9 |



# 1. Description

### 1.1. Purpose

As part of the ALMA Phasing Project (APP), an upgrade of the Master Frequency Standard (MFS) is required, as the current Rubidium based source is inadequate.

Doc N:

Date:

Page:

This document describes basic framework required for the installation and initial testing of a T4Science Hydrogen Maser (Maser) in the CLOA room at the AOS, as well as a list of required equipment and personnel. A rough timeline is also presented.

### 1.2. Scope

This plan only covers the Maser installation part, along with a reduced set of PAS (Provisional Acceptance on Site) tests. A preliminary Compliance Matrix will be generated following the work.

It does not address the software and Monitor and Control upgrades that are required.

NOTE: although intended to ultimately replace the current, Rubidium cell based MFS, this Q1 2014 work will only install and functionally test the new HMaser, <u>without changing the CLOA from its current state</u>.

### 2. Related Documents and Drawings

#### **2.1. Applicable Documents**

| Ref    | Document Title                                  | Document Number            |
|--------|-------------------------------------------------|----------------------------|
| [AD01] | Backend IPT Product Assurance Requirements      | BEND-50.00.00.00-079-B-PRO |
| [AD02] | ALMA Environmental Specification                | ALMA-80.05.02.00-001-B-SPE |
| [AD03] | ALMA System General Safety Design Specification | ALMA-10.08.00.00-003-B-SPE |
| [AD04] | ALMA Safety Manual                              | ALMA-10.08.00.00-011-D-MAN |

#### **2.2. Interface Control Documents**

| Ref    | Document Title                    | Document Number                    |  |
|--------|-----------------------------------|------------------------------------|--|
| ICD 01 | ICD between APP and ALMA Back End | ALMA-05.11.10.00-50.00.00.00-A-ICD |  |

#### **2.3. Test Report Documents**

| Ref | Document Title                                       | Document Number            |
|-----|------------------------------------------------------|----------------------------|
| PAI | PAI for APP Hydrogen Maser Master Frequency Standard | ALMA-05.11.21.50-001-A-TDR |
| PAS | PAS for APP Hydrogen Maser Master Frequency Standard | ALMA-05.11.21.50-001-A-TDR |

#### 2.4. Abbreviations and Acronyms

| AD   | Applicable Document                    |
|------|----------------------------------------|
| ADE  | ALMA Department of Engineering         |
| AIV  | Assembly, Integration and Verification |
| ALMA | Atacama Large Millimeter Array         |
| AOS  | ALMA Operation Site                    |



| APP   | ALMA Phasing Project                                |
|-------|-----------------------------------------------------|
| BE    | Back End                                            |
| CLOA  | Central LO Article                                  |
| COTS  | Commercial Off the Shelf                            |
| CRD   | Central Reference Distributor                       |
| CRG   | Central Reference Generator                         |
| ICD   | Interface Control Document                          |
| LO    | Local Oscillator                                    |
| Maser | T4Science Hydrogen Maser                            |
| MFS   | Master Frequency Standard                           |
| MIT   | Massachusetts Institute of Technology Haystack Obs. |
| NRAO  | National Radio Astronomy Observatory                |
| OSF   | Operations Support Facility                         |
| PAI   | Preliminary Acceptance In-House                     |
| PAS   | Product Acceptance On-Site                          |
| RD    | Reference Document                                  |
| TBD   | To Be Determined                                    |
| UC    | Universidad de Concepcion                           |

Date:

Page:

### **3.** Installation Drawing (preliminary)

Below is a drawing representing the rack layout and an inside view of what the proposed installation plan hopes to achieve. The completed assembly will have all the doors and panels installed.



# 4. Bill of Materials

The Article to be installed consists of three major subassemblies, the maser , the battery packs and the racks, as indicated in the table below.

| Description           | Configuration Item Number |
|-----------------------|---------------------------|
| Hydrogen Maser        |                           |
| Equipto dual 19" rack |                           |
| Battery pack          |                           |
| Temperature Sensor    |                           |
| Inter rack Cables     |                           |
| Intra rack cables     |                           |

**Table 1: Hmaser article** 



## 5. Summary of Maser Requirements to be Verified and Accepted

### **5.1. Technical Requirements**

This plan is intended to cover only the installation of the hydrogen maser in the CLOA room. It does not cover the integration of the maser output into the CLOA, which will happen at a later date. For this reason, only two of the APP technical requirements will be addressed through the PAS, and those only partially.

Doc N:

Date:

Page:

- Maser Allan Standard Deviation shall be < 1e-13 at 1 second integration times and < 2e-14 at 10 second integration times (APP0120).
- Maser status/health information shall be accessible via a network interface and recorded at least once every 10 minutes (APP0110).

### 5.2. Project and IPT-level Technical Requirements

- Verification of the temperature monitoring system
- Verification of the M&C interface

### 6. Verification Process

The following section provides a summary of the process.

### 6.1. In-House Preliminary Verification and Acceptance (PAI)

The following tests will be performed at MIT Haystack to establish baseline performance:

• The Allan Standard Deviation of the maser signal with a precision quartz crystal oscillator will be measured at Haystack in the 1-10 second range. This test will use a Symmetricom 5115A Phase Noise Test Set. The schematic of the test with photo of the relevant test equipment is shown in Figure 1.



Figure 1: Test setup for ADEV measurement of Maser-Crystal comparison

• The APP Maser diagnostics can be remotely monitored via an internet connection. At MIT Haystack, this connection will be tested and verified. The nominal values of all diagnostics will be noted at MIT Haystack and recorded. The monitoring page can be accessed via a netbook computer directly attached to the maser internet connection (Figure 2).



| 🕹 Monitoring Maser -                                       | 🕑 Monitoring Maser - Mozilla Firefox |                          |            |                  |                                       |
|------------------------------------------------------------|--------------------------------------|--------------------------|------------|------------------|---------------------------------------|
| Eichier Édition Affichage Historique Marque-pages Qutils ? |                                      |                          |            |                  |                                       |
| () · C >                                                   | K 🏠                                  | http://10.7.114.1        | 3/         |                  |                                       |
| 🔎 Les plus visités 灯 Ho                                    | tmail 📄 Pe                           | ersonnaliser les liens 📄 | Windows Me | edia 📄 Windows 📄 | Prévisions et relevés 🔝 Groupe Orolia |
| Maser Monito                                               | ring NI                              | OCU8-17 iMase            | er44       |                  |                                       |
| 08/09/2008 08:16:59                                        | MONITOR                              | RING RECORD ON           |            |                  |                                       |
| U batt.A[V]                                                | 27.417                               | EB heater[V]             | 11.953     | Pirani heat.[V]  | 23.175                                |
| I batt.A[A]                                                | 0.413                                | I heater[V]              | 6.860      | Unused           | 0.000                                 |
| U batt.B[V]                                                | 27.856                               | T heater[V]              | 10.312     | U 405kHz[V]      | 7.588                                 |
| I batt.B[A]                                                | 3.154                                | Boxes temp[°C]           | 48.120     | U OCXO[V]        | 5.244                                 |
| Set H[V]                                                   | 6.559                                | I boxes[A]               | 0.510      | +24 VDC[V]       | 24.61                                 |
| Meas. H[V]                                                 | 1.311                                | Amb.temp.[°c]            | 25.549     | +15 VDC[V]       | 14.30                                 |
| I pur.[A]                                                  | 0.630                                | C field[V]               | 4.687      | -15 VDC[V]       | -15.00                                |
| I diss.[A]                                                 | 0.532                                | U varactor[V]            | 1.455      | +5 VDC[V]        | 5.04                                  |
| H light[V]                                                 | 2.751                                | UHT ext.[kV]             | 3.541      | -5 VDC[V]        | -0.08                                 |
| IT heater[V]                                               | 13.169                               | I HT ext[uA]             | 5.859      | +8 VDC[V]        | 7.89                                  |
| IB heater[V]                                               | 12.017                               | UHT int.[kV]             | 3.531      | +18 VDC[V]       | 17.03                                 |
| IS heater[V]                                               | 11.577                               | I HT int.[uA]            | 6.836      | Unused           | 0.00                                  |
| UTC heater[V]                                              | 12.539                               | H st.pres.[bar]          | 8.677      | Lock             | 1.00                                  |
| ES heater[V]                                               | 9.951                                | H st. heat[V]            | 13.049     | DDS              | 1420405750.297761                     |

Date:

Page:

Figure 2: Maser web-interface with diagnostic information (updates with a user-settable cadence)

In addition, the 1PPS from the Maser will be compared against a GPS 1PPS to measure and • verify linearity of offset between these pulses over time. The drift of the maser on time scales of a day will be recorded.

The test results will be compiled in the PAI for APP Hydrogen Maser Master Frequency Standard, document number ALMA-05.11.21.50-0001-A-TDR.

#### **6.2. On-Site Acceptance (PAS)**

The following tests will be performed at the AOS and then compared to PAI results. It is envisaged that the PAS of the maser will be carried out in the Correlator Room at the AOS. Once PAS is passed, the maser will be relocated into the racks to be installed in the CLO Room.

The maser will require at least 24 hours to come to thermal equilibrium. After that has been • achieved and verified through stabilization of the diagnostic signals, we will compare all maser diagnostics (Figure 2) with those recorded while at MIT Haystack. This will constitute evidence that the main sub-systems in the maser are operating normally. For this



test, a netbook computer will be connected directly to the Maser at the AOS, but we will also test connectivity on the ALMA network as available.

Doc N:

Date:

Page:

- After verification of normal maser diagnostic signals, the comparison ADEV test shown in Figure 1 will be performed and the results compared with identical tests carried out at MIT Haystack.
- A test of the APP GPS vs Maser 1pps will be carried out and compared to results obtained at Haystack. This will be done with the Agilent Counter. At this time, the capability of synching the maser 1PPS to an external 1PPS (in this case the GPS 1PPS) will be performed.
- The Maser will be connected to the Computing network, to enable monitoring and control. All basic remote maser access via internet connection will be tested, including monitoring and control.
- PAS for the maser rack will consist of a visual check that the rack sustained no damage during shipment, and then after installation in the CLO Room, the A/C power from the inrack supply will be verified.

The following equipment must be on site before the start of PAS. Items indicated by a (\*) must be brought to the site 2 weeks (14 days) prior to PAS, and powered up to allow them to stabilize.

- Oscilloquartz crystal (\*)
- Symmetricom 5115A Phase Noise Test Set
- Netbook computer
- Agilent 53132A Counter
- Connecting cables

### **6.3. Maser Integration and Test**

During the maser PAS, the racks to house the maser will be installed in the CLO Room, and when the racks are ready, the maser will be installed in the HMR and all connections within the HMR established. In addition, all cabling from the HMR to the correlator room (for maser 1PPS output and 1PPS Synch) will be run.

At this point, several additional tests leading to integration of the maser can be carried out:

- Remote monitoring and control of the maser can be re-tested through commands and features available in software release version 10.8.
- Re-establishment of monitoring the comparison of the APP GPS 1PPS with the maser 1PPS; synch testing of the maser 1PPS can also be tested with the maser in place.

The tests above do not require that the 5MHz and 10MHz outputs from the maser be connected to the ALMA CRG/CRD (replacing the rubidium 5MHz). Once these connections are made (ref. ICD with ALMA BE), the remaining integration tests can be carried out. These will also require software version 10.8 to be running:

- Monitor ALMA GPS 1PPS vs. 1PPS derived from maser 5MHz. This is the same comparison that is currently available using the rubidium standard.
- Regression tests to ensure that the maser 5/10MHz references deliver performance identical to that of the Rubidium standard for standard ALMA observations.



# 7. Preliminary task list

The maser rack will be installed in the LO room, using the two remaining mounts on the seismic structure. Since the raised floor, seismic mount and electrical connections are already in place, no modifications to the HVAC or electrical systems are planned.

Doc N:

Date:

Page:

The following task list is based on the availability of a certain number of AIV staff, in addition to the staff from MIT, Universidad de Concepcion and NRAO:

- 2 operators, for heavy lifting, including forklift, from ALMA Logistics
- 2 technicians for cabling and installation

| Responsible Group  | General Tasks                                                      |
|--------------------|--------------------------------------------------------------------|
| ADE                | Prepare Correlator room for maser PAS and prepare CLO room for     |
|                    | maser installation (make room for equipment, manage ventilation,   |
|                    | power, communications). Prepare space for testing.                 |
| Logistics/BE       | Transport crates (maser, racks and test equipment) from OSF to     |
|                    | AOS                                                                |
| ADE/BE             | Uncrate racks.                                                     |
| NRAO/MIT/UC        | Uncrate maser and test equipment                                   |
| MIT/UC             | Maser PAS (in Correlator Room)                                     |
| ADE/BE/NRAO/UC     | Install new racks in CLO Room                                      |
| NRAO/MIT/UC        | Maser rack PAS                                                     |
| ADE/BE/MIT/UC      | Install batteries and cable harnesses in maser rack.               |
| ADE/BE             | Perform intra-rack connections (including connections for 1PPS and |
|                    | 1PPS synch between CLO Room and Correlator Room.                   |
| ADE/BE/MIT/NRAO/UC | Install Hydrogen Maser in rack.                                    |
| ADE/BE/MIT/NRAO/UC | Maser I&T tasks as above (section 6.3)                             |
| ADE/BE             | Wrap up                                                            |

In addition, OSF staff will need to arrange:

- Unloading of racks and maser from transport truck (note: do maser and rack require adherence to ALMA pallet standard?)
- Storing of racks and maser until ready to transport to AOS (in the Correlator lab at OSF).
- Transport of racks and maser to AOS (?TBC)
- Uncrate racks and maser, storage of crates.



Doc N:

Date:

Page:

# 8. Timeline, Tasks, Responsibilties

### **Preparation:**

| Task                                   | Responsible   | Start date                  | Comment                 |
|----------------------------------------|---------------|-----------------------------|-------------------------|
|                                        | group         |                             |                         |
| Determine install date                 | MIT/NRAO/     | March 1st                   | Tentatively set for May |
|                                        | <b>BE/ADE</b> |                             | 10-17                   |
| Plane tickets                          | Various       | April                       |                         |
| Request lodging                        | Various       | April 1-15                  |                         |
| Truck rental                           | ??            | April 1-15                  | For transport from      |
|                                        |               |                             | Santiago?               |
| Compile export documentation           | MIT/NRAO      | April 1-15th                |                         |
| Ship racks                             | MIT           | April 10th                  |                         |
| Ship Maser                             | MIT           | April 15th                  |                         |
| High altitude physical / dispensation  | All visitors  | April 1 <sup>st</sup> ~30th |                         |
| Racks Arrive at OSF                    |               | May 5th                     | No later than           |
| Transport Racks to AOS                 | Logistics/BE  | May 6th                     |                         |
|                                        | ADE           | May 6-7th                   |                         |
| Prepare CLO room for Maser             |               |                             |                         |
| installation (make room for            |               |                             |                         |
| equipment, manage ventilation,         |               |                             |                         |
| power, communications). Prepare        |               |                             |                         |
| space for testing.                     |               |                             |                         |
| Prepare Correlator room for Maser      | ADE           | May 6-7th                   |                         |
| tests (to be done prior to re-location |               |                             |                         |
| in CLO room)                           |               |                             |                         |
| NRAO/UC Staff Arrive OSF               |               | May 7th                     |                         |
| Safety Training,                       |               | May 7th                     |                         |
| Authorizations(NRAO/UC)                |               |                             |                         |
| Maser arrives at OSF                   |               | May 10 <sup>th</sup>        | No later than.          |
| MIT Staff Arrive OSF                   |               | May 11th                    |                         |
| Safety Training, Authorizations        |               | May 11th                    |                         |
| (MIT)                                  |               |                             |                         |
| Transport Maser to AOS                 | Logistics/BE  | May 11 <sup>th</sup>        |                         |



#### Installation/Testing

| Task                                | Responsible<br>group | Start date  | Comment                       |
|-------------------------------------|----------------------|-------------|-------------------------------|
| Uncrate racks, rack PAS (section    | ADE/BE/NR            | May 9-10th  |                               |
| 6.3), install rack in CLO Room      | AO/UC                |             |                               |
| Signal Cables run for maser signals | ADE/BE               |             |                               |
| (1PPS, 1PPS Synch) between CLO      |                      |             |                               |
| Room and Correlator Room.           |                      |             |                               |
| Uncrate maser, setup maser PAS (in  | ADE/BE/MI            | May 11-14   | Note, May 14 <sup>th</sup> is |
| Correlator Room)                    | T/UC                 |             | regression testing: no        |
|                                     |                      |             | work in CLO Room.             |
| Move Maser to CLO Room, install     | ADE/BE/MI            | May 15th    | Work in CLO Room              |
| in rack                             | T/NRAO/UC            |             |                               |
| Maser Installation & Test (section  |                      | May 15-17th |                               |
| 6.3)                                |                      |             |                               |
| Final testing -> handover           |                      | May 17th    |                               |
| Compile results for TDR             |                      | May 31st    |                               |