
ALMA Phasing Project Update to TelCal Design

ALMA-05.11.62.01-0001-C-DSN

2014-04-7

Prepared by: Organization Role Date and Signature

H. Rottmann MPIfR!
W. Alef MPIfR!

Approved by: Organization Role Date and Signature

Authorized by: Organization Role Date and Signature



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 2 of ??

Change Record

Version Date Affected Section(s) Author Reason/Comments
A 2013-04-24 All H. Rottmann CDR Draft

B 2013-06-18 1.3 G. Crew 4-digit seq numbers

C 2014-04-07 All H. Rottmann Updated for ALMA-10.8



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 3 of ??

Contents



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 4 of ??

List of Figures

List of Tables



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 5 of ??

Chapter 1

Introduction

1.1 Purpose

This document describes the implementation for the required changes to the TelCal (Telescope
Calibrations) subsystem in the frame of the ALMA Phasing Project (APP!). For a detailed de-
scription of the existing TelCal system please consult documents [RD1] and [RD2]. Chapter ?? will
review the basic architecture of the existing TelCal system. In chapter ?? we will briefly describe
the strategy and the general concept for phasing the ALMA! array. Chapter ?? will focus on the
implementation details within the TelCal subsystem.

1.2 Reference Documents

The following documents contain additional information, are referenced in this document, and
should be consulted for further, more detailed information.

Table 1.1: Reference Documents

Reference Document Title Document ID
[RD1] Telescope Calibration Design Document COMP-70.75.00.00-002-I-DSN
[RD2] TELCAL IDL Documentation COMP-70.00.00.00-70.75.00.00-A-ICD
[RD3] ALMA Software Science Requirements and Use Cases ALMA-SW-0011
[RD4] Phasing Algorithm for the Phasing System not assigned
[RD5] ALMA Phasing Project Update to Corr/Control Design ALMA-05.11.61.01-0001-A-DSN

1.3 Acronyms

ALMA Atacama Large Millimeter/submillimeter Array

APP ALMA! Phasing Project

MPIfR Max Planck Institute für Radioastronomie



Chapter 2

TelCal Architecture

This chapter gives a brief overview of the general TelCal architecture. It outlines the main
components and their responsibilities within TelCal. The picture presented here is in no way a
complete description of the TelCal subsystem but focuses on the aspects relevant to the TelCal
modifications within the ALMA! phasing project (APP!). For a comprehensive discussion of the
TelCal subsystem please see the original design document ([RD1]).
The TelCal subsystem performs three major tasks which are handled by different TelCal subpack-
ages:

• Reading the data and metadata: handled by TelCalDataManager

• Processing the data: handled by TelCalResults

• Publishing the results: handled by TelCalPublisher

2.1 TelCal package structure

The TelCal system is structured in various subpackages. The following list displays the packages
that are relevant in the context of the planned APP! extensions of TelCal. Figure ?? sketches the
basic TelCal architecture.

• TelCalDataManager This package is responsible for reading and filtering of the bulk data
streams and the associated metadata. It also controls the workflow of the various calibration
tasks that TelCal performs. The ReceivingDataManager ACS! component runs persistently
as it must receive and react on incoming events from the notification channel. The Receiv-

ingDataManager component reads the channel-averaged-data stream and obtains the asso-
ciated scan metadata from the DataCapturer component. The scan intent encountered in
the scans metadata determines which calibration processing (if any) will be done by TelCal.
The TelCalDataManager package contains the ReceivingDataManager and the Parameter-

Tuning interface. The ParameterTuning interface is used to pass additional parameters (not
included in the ASDM! metadata) to TelCal.

• TelCalResults The TelCalResults package contains the engines that implement the algo-
rithms for the various calibration tasks which TelCal performs. This package also contains
complimentary libraries (e.g for accessing ASDM! data) and the python scripts to be used
for offline calibration and plotting in CASA!.

• TelCalPublisher This package is responsible for publishing calibration results and inform-
ing other system components that new results are available (through notification channel
events). TelCalPublisher contains the GetTelCalResults interface for publishing the cali-
bration results.

6



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 7 of ??

TelCalResults	  

Engines	  

Libraries	  

TelCalPublisher	  

GetTelCalResult	  

Control	  

DataCapture	  

Correlator	  

Bulk	  

TelCalDataManager	  

ParameterTuning	  

ReceivingDataManager	  
ReceivingDataManager	  

ReceivingDataManager	  

use 

Bulk 
data 

Meta 
data 

Figure 2.1: A sketch of the TelCal structure and its relationship to other pack-
ages. Note that this figure does not lay out the complete TelCal architecture
but focuses on the parts that are relavant for the APP! developments.

2.2 TelCal modes of operation

The TelCal subsystems supports three modes of operation:

• Online mode The online mode is the default mode of operation where TelCal is started up
as a subsystem of the ALMA! software. The TelCal workflow is controlled by consuming
and issuing notification channel events. In the online mode TelCal uses real-time bulk and
meta data.

• Offline mode In the offline mode python scripts can execute non-realtime calibration tasks
from (real or simulated) data stored on disk. The offline mode is mainly used in the develop-
ment process in order to do code unit testing as well as to verify the adopted algorithms.

• Simulated online mode This mode is a hybrid mode between the online and the offline
mode. Here TelCal is started up as a standalone subsystem (without external components
being present). The workflow within TelCal in this mode can be driven by simulated noti-
fications events. The data consumed is stored on disk. This mode is useful for testing the
workflow logic within TelCal.



Chapter 3

Phasing loop concepts

3.1 Overview

Phasing of the ALMA! array will operate on two different time-scales. The “fast” loop operates
on time-scales of a second and applies the WVR! and residual delay corrections. The “slow” loop
operates on the timescale of a subscan duration (2-30 s) and determines the residual antenna phase
corrections in order to bring the phased array sum into coherence. The fast loop is handled by the
correlator and is described in details in the APP! Corr/Control design document[RD5]. The slow
loop is handled by the TelCal subsystem and its concepts will be outlined in the following sections.

Figure ?? displays the sequence diagram for the slow part of the phasing loop. From TelCal’s
perspective the phasing calibration starts when the ReceivingDataManager receives ScanStarted
event. It then parses the scan intent and, in case a relevant intent is found, initializes the appropriate
objects (e.g. Scan, Result) needed for the phasing task.

Upon receiving the ScanProcessed event the ReceivingDataManager can access the channel-
averaged-data (with the fast loop corrections already applied) and obtains the associated metadata
from the DataCapturer component via the getFinalMetaDataQL interface.

After reading the data and the metadata the actual phasing processing starts. Due to the
asynchronous nature of the fast and the slow phasing loop, part of the scan data send by the
correlator has phasing solutions from the previous scan already applied. These data have been
flagged by the correlator in order to signal to TelCal that this portion of the scan must not be
used in the determination of new phasing solutions. In a first step TelCal will select the unflagged
portions of the channel-averaged scan data and will time-average these. The phase solver then
determines phase corrections for each subband and station so as to bring the phased array sum
into coherence (details of the solution algorithms are discussed in sections ?? and ??. If the phasing
source has extended stucture the phase solver will need to compute the source model as part of the
solving processing (see section ??). Finally a quality estimate will be calculated as will be described
in section ??.

When the calibration calculation has finished the TelCalPublisher sends the AppPhaseReduced
event to inform other components that the phasing calibration results can be obtained via the
GetTelCalResults interface. This is the final step of the slow phasing loop.

3.2 Basic phasing theory

Phasing of local interferometers is a well-proven standard technique implemented at various
radio interferometers mostly for VLBI!. The assumptions and algorithms used are identical to
those of self-calibration in mapping interferometry data. The main purpose is to determine phase-
corrections for all antennas of an array so that the individual antenna signals can be added in a
coherent way.

For an N -element interferometer a phase φobs(t) can be measured as a function of time t on
the baselines between any two antennas i and j . The observed baseline phases are the sum of the
structure phase of the observed source φmod, the instrumental phase φins, the atmospheric phase

8



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 9 of ??

φatm and a thermal noise term φn specific to each baseline.

φobs(t) = φmod(t) + φins(t) + φatm(t) + φn(t)

The structure phases which have to be known with sufficient accuracy from a model, and the
instrumental and atmospheric phases have to be removed from the observed baseline phases which
can subsequently be added coherently.

Instrumental and atmospheric phases can be factorized by antenna so that after subtraction of
the source model phases we can determine the N unknown sums of atmospheric + instrumental (or
“antenna”) phases. The problem is over-determined for arrays of more than two antennas and we
have to solve for N − 1 antenna phases ψc as we are dealing with (antenna) phase differences. The
calculated antenna phases ψc(t) = L · (φobs(t)− φmod(t)) (where L is some linear transformation)
are then used to correct the observed baseline phases. Usually one antenna is designated as the
reference antenna r and for a standard least squares solution we get

ψci =
1

W

∑
i,j 6=i

wjφij −
∑
j,j 6=r

wjφrj


where wj are antenna weights which could reflect the sensitivity of each antenna. W is the sum of
the weights. It should be mentioned that the antenna-based noise ψn(t) is actually reduced by a
factor

√
N from the baseline-based noise φn(t).

3.3 Source modeling

Two cases have to be considered. In the initial implementation a point source model will be
assumed and no model phases have to be considered, as they will all be zero for a point source at
the phase center of the array.

For the more general case of a source extended on ALMA! scales, δ-components will be provided
to TelCal by VOM! via the ParameterTuning interface (it is anticipated that δ-components will
be provided via the VEX-schedule). For each new source to be used for phasing, the δ-components
of the source model will be gridded onto an array of adequate dimension using a two-dimensional
Gaussian function as often done in standard mapping software. The array will be FFT!ed to the
UV-plane and model phases will be interpolated for each visibility to be used in the subsequent
estimate of the antenna phases φins(t) + φatm(t). (For strongly varying model phases on long
baselines (unlikely to be good for phasing) the model phases could be subtracted before the data is
time averaged or such data could be discarded. In a later implementation TelCal could be modified
to decide to do this for long baselines where it is necessary according to some criteria yet to be
defined.)

The amplitude taper in the UV-plane introduced by using a Gaussian function for gridding the
δ-components can be ignored.

3.4 Phase Solver

An antenna gain solver (simple least squares) is already a part of the TelCalResults package
and is utilized by some of the calibration engines. It will be also used for the initial implementation
for the APP! phase solver algorithm.

In an initial step the lease square solution will be implemented without making use of antenna
weighting. A weighted solver will be implemented in a second step. In addition to the usual 1/Tsys

2

weights it will be enabled to make use antenna weights provided by VOM! via the ParameterTun-
ing interface. Calculation of weights would be based on the quality estimation given by TelCal and
possible manual interaction by the ALMA! operator. For instance an antenna found to be bad can
be kept in the solution with a reduced weight. Note: even antennas excluded from the phased sum
should be included in the phase solver algorithm with very low weights. This will allow monitoring
their performance and possibly their re-inclusion in the phased sum upon recovery. The required



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 10 of ??

matrix inversion has to be calculated only when weights change.
More sophisticated phase solvers might be implemented at a later stage depending on the experience
gained during the commissioning phase of APP!.

3.5 Phasing modes

The slow phasing loop can operate in two different phasing modes depending on the strength
of the astronomical target source:

• active mode In case the program source scheduled by the astronomer is sufficiently strong
it can serve as a phasing calibrator to calculate the phasing solutions continuously during the
observations. New phasing solutions will be calculated and applied for every scan. Scans for
which TelCal should determine phasing solutions must receive the CALIBRATE_APPPHASE_ACTIVE
scan intent.

• passive mode In case the astronomical target is too weak to serve as a phasing calibrator
the phasing solutions must be determined by scheduling intermittent phase calibration scans
on a dedicated, strong calibration source. These calibration measurements will be done in the
active mode. The phasing solutions obtained on the correlator are then applied to subsequent
(possibly multiple) scans until the next phasing calibration measurement. Scans that should
receive phasing solutions obtained on a previously measured phasing calibrator must have
the CALIBRATE_APPPHASE_PASSIVE scan intent.

In the initial implementation TelCal will be idle during passive scans. Later, TelCal could be
enabled to calculate phasing solutions also on weak sources. These solutions would not be
actually applied when forming the phased sum, but might be useful for monitoring phasing
performance of individual antennas.

In the passive mode the lengths of individual subscans and the frequency of measuring in-
termittent phasing calibrators has to be carefully adjusted to the prevailing (or typical)
tropospheric conditions at the site. The parameter space for the passive mode can be tested
using archived ALMA! data obtained under various weather conditions.

3.6 Phasing quality estimation

Different methods can be implemented to indicate the performance of an antenna in the phasing,
so as to allow an operator or an algorithm in VOM! to exclude an antenna when forming the phased
sum.

The simplest method to be implemented is to monitor the phase corrections of each antenna in
VOM! as a function of time. After the first very few scans incremental phase corrections should
be small for antennas whose instrumental phase and atmospheric conditions are well behaved.

In a first step TelCal will simply calculate the residuals to the fits and provide those to VOM!
(as part of the CalAppPhase result) as an indication of the performance of each antenna.

In a later stage more sophisticated quality estimates could be realized if needed. E.g., as one of
the correlator inputs will be the summed signal it can be used as a test antenna. Its signal should
be N -times that of the others with the noise increased by

√
N . The amplitude gains on all other

antennas should be equal, so that pointing errors, focus errors, and decorrelation for large baselines
can be detected. In case different quality methods will be implemted the ParameterTuning interface
will allow to select the desired method. For details of the currently available quality methods please
see Appendix ?? .

3.7 Slow loop timing

The slow loop timing is sketched in Fig. ?? for operation in the active phasing mode. TelCal
slow loop processing begins upon reception of the ScanProcessed event from DataCapturer. At



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 11 of ??

this point channel averaging has been done and the correlator has advances already to processing
the next scan. For a comprehensive discussion of the timing issues previous to TelCal please consult
the appendix of the Corr/Control design document ([RD5]).

The processing steps in TelCal consist of reading and time averaging the data, obtaining the
associated metadata, possibly calculating the source model, running the least square solver and
publishing the results. The time-lag introduced by these operations is dominated by the data access,
which can take 1-2 seconds. The actual solving process runs on time scales of milliseconds and can
be neglected. We expect the latency of the slow loop to be less than 3 seconds from the time TelCal
receives the ScanProcessed event until it has published the new phasing solutions through the
GetTelCalResults interface. Employing the new bulk reading system (BDNT!) we expect this
number to decrease somewhat.

As outlined in this section the slow loop processing introduces an extra time-lag (in addition
to the fast loop time-lag) between the end of a scan and the availability of new phasing solutions.
As the correlator applies new solutions immediately when available, we have the situation where
(except for the very first scan of a scan sequence) the first part of a scan will already have phasing
solutions applied. As TelCal should not include this scan portion to calculate new solutions the
correlator will flag these datapoints invalid for use in TelCal.

For completeness we show in Fig. ?? the timing diagram also for the case of the passive phasing
mode.



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 12 of ??

«CORBAInter...

:GetTelCalResults

«CORBAInterface»

:ReceivingDataManager

«CORBAInterf...

:ParameterTuning

«CORBAInte...

:DataCapturer

«CORBAInterface»

:SingleFieldInterferometryObservingMode

«CORBAInte...

:ExecutionState

«CORBAInterf...

:ObservationControl

consider first ALMA scan

loop for each ALMA scan

consider asynchronos processing

Phase processing 
done.

setSubArray(subarrayId, antennaList, bdStreamInfo)

setAppParameters(subarrayId, mask, refAntenna)

setAppParameters(mask, refAntenna, timestamp)

doAppScanSequence(...)

setAppScanParameter(sourceModel, algorithmMode)

setAppScanParameters(subarrayId, sourceModel, algorithmMode)

beginScan(intents)

ScanStarted()

«event»

parseIntents()

startSubscanSequence(arrayName, subscanIntents)

startSubscanSequence(subarrayId, startTime, executeBlockID, executeBlockNumber, subscanInfos, callback)

report(status)

sendSubScanCorrelatorData(arrayId, subscanNumber, data)

ScanProcessedEvent()

«event»

getFinalMetaDataQL(scanNum) :ASDMDataSetIDL

calculatePhaseResults()

beginScan(intents)

ScanStarted()

«event»
startSubscanSequence(arrayName, subscanIntents)

startSubscanSequence(subarrayId, startTime, executeBlockID, executeBlockNumber, subscanInfos, callback)

publishAppResults()

isAppPhaseResultAvailable()

AppPhasedReducedEvent()

«event»

AppPhaseReducedEvent()

«event»

getAppPhaseResult()

getAppPhaseResult() :AppPhaseResult
getAppPhaseResult() :AppPhaseResult

analyzePhaseResults()

setAppSlow(subarrayId, mask, refAntenna, phaseSeq, interval) :timestamp

setAppParameters(subarrayId, mask, refAntenna, timestamp)

*fastPhaseLoop()

report(status)

sendSubScanCorrelatorData(arrayId, subscanNumber, data)

ScanProcessedEvent()

«event»

Figure 3.1: Sequence diagram of the slow phasing loop the interaction between
VOM and TelCal. Fragments highlight the first (unphased) scan, the asyn-
chronous phase processing (overlapping with scans) and the loop for every
subsequent scan.



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 13 of ??

Active!

Source	  2	  VLBI scan 

ALMA scan (= subscan) 

TelCal activity 

Phasing solution validity 

flagged data interval 

Time 

Active! Active!Active! Active! Active! Active! Active!

Source	  1	  

Figure 3.2: Timing of the slow phasing loop in case of operating in the active
mode.

Active!

Target	  source	  (weak)	  VLBI scan 

ALMA scan (= subscan) 

Calibrator	  source	  (strong)	  

TelCal activity 

Phasing solution validity 

flagged data interval 

Time 

Active! Active!Active! Passive!

Figure 3.3: Timing of the slow phasing loop in case of operating in the passive
mode.



Chapter 4

Implementation details

In chapter ?? we have reviewed the basic architecture and the general concepts of operation of
the present TelCal subsystem. It is important to note at this point that the work within APP! can
be fully realized within the current architecture by simply extending the existing interfaces and
components.
In the following sections the required changes to the various TelCal packages will be described in
more detail.

4.1 TelCalDataManager package

4.1.1 Event consumers

Currently all TelCal action is controlled by consuming the ScanStarted and ScanProcessed

events from the notification channel. This is true also for the new phasing calibration logic to be
implemented by the APP!. A few modifications need to be made to the relevant event consumers:

• ScanStartedEventConsumer This consumer prepares the Scan object which will be used
in the actual calibration processing. Initialization is driven by the encountered scan in-
tent and therefor ScanStartedEventConsumer needs to be instructed to also react on the
new scan intents introduced for the phasing calibration CALIBRATE_APPPHASE_ACTIVE and
CALIBRATE_APPPHASE_PASSIVE. Specifically these intents must be included in the call to
Scan::addScanIntent() within the ScanStartedEventConsumer::newScan() method.
Another task of ScanStartedEventConsumer is to read additional calibration parameters
from ParameterTuning and attach them to the Scan object. This is handled within ScanStart-

edEventConsumer::setParameterTuningParameters which needs to be modified in order to
handle the extra parameters required for the phasing calibration (see ??).

• ScanProcessedEventConsumer This consumer commands reading of the binary bulk data as
well as of the associated ASDM! metadata and attaches those data to the Scan object.
It then initiates the appropriate calibration engine (depending on the scan intent) and starts
processing. After processing has finished it makes the calibration result available via the Tel-
CalPublisher.
The ScanProcessedEventConsumer::publish method needs to be extended in order to con-
vert the phasing result structure into the CalAppPhase ASDM! table and publish it.

4.1.2 ReceivingDataManager

The ReceivingDataManager component currently provides access to the channel-averaged data,
the Tsys measurements and the ASDM! metadata which is sufficient for realizing the APP!
implementation. An implementation for the new BDNT! technology that will be used by ALMA!
in the future to read the bulk data already exists. This component requires no changes.

14



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 15 of ??

4.1.3 TelCalAsdmResultsConverter

TelCalAsdmResultsConverter converts the result structures of the various calibration oper-
ations to ASDM! result tables. The phasing calibration to be added will have its own result
structure (AppPhaseResult) and a corresponding new ASDM! result table (CalAppPhase). Tel-
CalAsdmResultsConverter needs to be extended with a method to perform the conversion, e.g.:

CalibrationResult *TelCalAsdmResultsConverter::convert

(AppPhaseResult *result, Scan *scan_p, string arrayName);

4.1.4 ParameterTuning

The ParameterTuning interface allows to get/set extra parameters for the calibration proce-
dures. In the APP! case a few extra parameters will be passed to the phasing calibration via this
interface:

• quality calculation method As outlined in section ?? the characterization of the per station
phasing quality can be realized in various different ways. The ParameterTuning interface will
be extended in order to allow the VOM! to select the quality estimation method to be applied
by TelCal.

• source model For non-pointlike phase calibrators the phase solver must take into account
the source model structure (see ??). The ParameterTuning interface will be extended to
allow passing a list of δ-components that characterize the source model to be used by the
phase solver. The δ-components must have been determined prior to the ALMA! VLBI!
observations and can be specified by the observer through the VEX! file (see also [RD5]).

• antenna weights In the first stage the phase solver will use antenna weights based on Tsys
as described in section ??. However, in a later stage it might be desirable to allow setting of
additional weights that are based on the automatic estimations of the phasing quality and/or
an interactive decision of the ALMA! operators. In order to allow setting of antenna weights
by e.g. VOM! the ParameterTuning interface will contain an appropriate interface method.

Appendix ?? provides a list of all currently implemented parameters.

4.2 TelCalResults package

4.2.1 Engines

• AppPhaseResult This is a new class derived from the Result base class contained in TelCal-
Results. AppPhaseResult will hold the results of the phasing calibration.

• AppPhaseScan This is a new class derived from the Scan base class contained in TelCalResults.
This class must implement the Scan:process() method which holds the actual code for
performing the phasing calibration and must return an AppPhaseResult object.

• Scan This is the base class for the various derived calibration engines. The empty ::process

interface method must be implemented by the subclasses for performing the various calibra-
tion tasks. The Scan::addCalDataRow must be extended in order to accomodate for the new
CAL_APPPHASE calibration type.

• Calibration This class serves as the factory for the various engines that perform the dif-
ferent calibration tasks. Based on the the scan intent the Calibration:process calls the
appropriate Scan:process methods to perform the appropriate calibration action. This class
must be extended accordingly in order to initiate the phasing calibration when encountering
the CALIBRATE_APPPHASE_ACTIVE or CALIBRATE_APPPHASE_PASSIVE scan intents.



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 16 of ??

4.2.2 AsdmReader

The AsdmReader class is used by TelCal to access the scan’s ASDM! metadata. Any updates
to the ASDM! datamodel like the proposed addition of the two new APP! related tables (see
??) will be automatically available within AsdmReader without the need for explicit coding. No
changes required here.

4.3 TelCalPublisher package

4.3.1 GetTelCalResults

The IDL! defintion and the implementation of the GetTelCalResults interface must be ex-
tended to contain a getAppPhaseResult which should return an AppPhaseResult object.

4.4 ASDM

The phasing of the ALMA! array will require to add two new tables to the ASDM! datamodel:
AppParameters to hold parameters relevant for the phasing (e.g. the reference antennna) and
CalAppPhase for holding the results of the phasing calibration of a scan. The structure of these
new tables is described in detail in the APP! Corr/Control design documents ([RD5]).
Additionally, new elements need to be added to these ASDM! enumerations:

• ScanIntent Two new scan intents (CALIBRATE_APPPHASE_ACTIVE and
CALIBRATE_APPPHASE_PASSIVE) are needed to initiate the phasing calibration in the active
and the passive mode respectively.

• CalType The phasing calibration will receive the new calibration type: CAL_APPPHASE.



Appendix A

Parameter Tuning

The following ParameterTuning parameters are being evaluated on the CALIBRATE_APPPHASE_ACTIVE
and CALIBRATE_APPPHASE_PASSIVE scan intents.

A.0.1 Global parameters

• appSimulationMode [integer] activates the solution engine in simulation mode. The actual
channel averaged visibilities get replaced by simulated ones depending on the simulation mode
selected:

0 simulation is off (default)

1 simulated visibilities with amp = 1 and antenna phases increaséıng in steps of 20◦

2 simulated visibilities with amp = 1 and random antenna phases between −π to +π

3 simulated visibilities with amp = 1 and random antenna phases between −5π to +5π

• appDebugMode [integer] Activates the debug mode if set to value > 0. When activated the
CalAppPhase engine will print additional debug information to the ACS logs and write
diagnostic data to severeal ASCII files (located in the home directory of the user running
ACS):

1. solution0.txt / solution1.txt contain the phase solutions for the two polarizations
respectively.

2. fullVisiDump.txt contains the channel averaged visibilities for all baselines and polar-
izations.

3. sigma.csv contains the standard deviations of phase residuals per antenna.

• phasePacking [string] Defines how many solutions will be delivered by the phasing algorithm.
Valid inputs are:

• ONE_PER_ANT One phase solution per antenna, polarization and baseband. The visibilities
will be time-averaged over the subscan. If the baseband contains more than one spectral
window and/or mutiple channels the visibilities will be channel-averaged prior to solving
for the phases.

• phasedSumAntenna [string] The name of the antenna to be used for the phased sum.

A.0.2 Baseband-dependent parameters

The following parameters can be set independentely for each baseband by appending the base-
band name to the parameter; e.g. phasingMode_BB_1 will set the phasing mode for BB 1.

• phasingMode_basebandName [string] The content of this parameter is simply passed on into
the CalAppPhase table. It has no impact TelCal operations.

17



ALMA Phasing Project
Update to TelCal Design

Doc: ALMA-05.11.62.01-0001-C-DSN
Date: 2014-04-7
Page: 18 of ??

• adjustToken_basebandName [string] A list of text tokens separated by ’+’. The content of
this parameter is passed on into the CalAppPhase table. It has no impact TelCal operations.
TelCal might however add these tokens to the received token list:

• NODATA added if no integrations remain in the subscan for calculating phase solutions,
e.g. due to a phaseAdjTime that is later than the end time of the subscan.

• phasedAntennas_basebandName [string] a ’:’ separated list of antenna names to be included
in the phased sum.

• refAntenna_basebandName [string] the name of the antenna to be used as the reference
antenna.

• efficiencyAntennas_basebandName [string] a ’:’ colon separated list of anetenna names to
be used for calculating phasing efficiencies.

• phaseAdjTime_basebandName [integer] The time of the last phase adjustment made by the
correlator. The time will be interpreted as nanoseconds since the 17 November 1858 00:00:00
UTC.

• phasedArrayAdjTime_basebandName [integer] The time of the last adjustement of the phased
array antenna configuration. The time will be interpreted as nanoseconds since the 17 Novem-
ber 1858 00:00:00 UTC.



Appendix B

Quality calculation

TelCal should provide one quality estimate per baseband for each antenna. The quality values
should be normalized to values in the range of 0 ≤ q ≤ 1 (see also [RD5]).

B.0.3 Least square fit residuals

TelCal evaluates the residuals of the least square fit of the antenna phases to provide a quality
figure of merrit. For each baseline the phase residual ∆ij is calculated in the following way:

∆ij = φij − (ϕi − ϕj) (B.1)

where φij is the observed baseline phase and ϕi and ϕj are the phase solutions obtained by the least
square fit. For each antenna we now construct the standard deviation σi of the phase residuals:

σi =

√∑N
j=1,j 6=i

∑npol

k=1(∆ijk)2

(N − 1) · npol
(B.2)

where N denotes the number of antennas in the array and npol is the number of polarizations. Note
that σi provides a pessimistic estimate as the total phase residual occuring on the baseline is fully
attributed to each single antenna of that baseline.
In the pure noise we expect σmax = π√

3
1. The quality estimate qi is now obtained by relating σi

to σmax:

qi =

{
σmax−σi

σmax
, if σmax ≥ σi

0, if σmax < σi
(B.3)

1see Thompson, Moran, Swenson, ”Interferometry and Synthesis in Radio Astronomy”, Section 9.3, p. 318

19


