Prototype Solver

As a first step in developing an operational phase solver for ALMA we implemented
some of the necessary algorithms in MATLAB, and applied them to the same data as
used in our coherence studies above. We used non-weighted linear least squares to
estimate a phase offset for (n — 1) antennas to a reference antenna, independently
for each correlator dump (0.96s). The normal equations and partial derivatives
have a simple form due to the nature of the data, for which we used the phase
differences between antenna pairs. Thus the observable is simply the angle of the
complex visibility; between antennas k and [ it is Oy; = ang (visibilityx). The
computed model thatis implemented is Cy; = ¢1 - ¢k, where ¢p1 and ¢k are the
model phases at antennas | and k. If we define ¢ to be the column vector of model
phases ¢ = [d1 .. ¢pu]T, then

A® = B, yielding the solution ¢ = A™'B , with
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where i and j are antenna indices running from 2..n. The double sums are over all
n(n-1)/2 visibilities, which are used to determine the n-1 phase offsets. In this work
each correlator dump yielded a separate solution, but for weaker sources some
integration over time may be necessary. Since all antenna weights were treated as
unity, the A matrix had a simple, constant form of 15’s along the diagonal and -1
elsewhere, which allowed it to be inverted once, at the outset. Note that the use of
weighting factors (relative to the reference antenna), would necessitate the
inversion of A whenever the antenna weights change, though this is still a minor
computational burden.

In this work the phases are determined relative to an arbitrary reference antenna,
but it is important for VLBI to then adjust the phases to be relative to the array
average. This “common mode” phase doesn’t have any effect on the coherence of the
ALMA phased sum, but it is significant when correlating with other VLBI antennas.
The premise is that the mean of the phases of all antennas is better behaved (with
respect to atmospheric and instrumental fluctuations) than a single antenna. This
was born out by the observation that the rms over time of the antenna phases
relative to a pool mean was lower than the rms with one antenna fixed, by amounts
in the range of 10-25 %.

Since voltage data from the antennas were not available, we tested the solution by
counter-rotating the complex visibilities from each antenna pair. A plot of the
rotated visibilities can be seen in Figure 1. Since this problem is linear in the
correction phases, there was no iteration necessary in the fitter. Also, it is necessary
to start with some initial guess at the phases, and to counter-rotate the data prior to
the fit with the a priori values. To the least squares fitter a phase of 20° is not the
same as a phase of 380°, since the mean phase is determining the fit result. The



counter-rotation can be approximate, with no effect on the end result. An automated
system can start with phases relative to a single antenna to start, and then track the
phases over time for use as a subsequent a priori.

This model solver can now be used to fairly simply explore a number of effects, e.g.:
* time lags in the application of the extracted phases
* poorer snr (by narrowing the bandwidth)
* smoothing of phase solutions over time and predictive filtering
* the effect of corrupted antennas

e eftc
2 counterotated YY visibilities

3 N
x10° counterrotated YY visibilities @k 10 P 10 counterrotated YY visibilities

Figure 1 WVR-corrected YY fringe visibilities for all 120 baselines (color-coded by baseline), for 63
accumulation periods, averaged over a 1.8 GHz band. The left panel shows the complex visibilities direct
from the correlator, after scaling via autocorrelation values. The central panel shows data that have
been counter-rotated using antenna phases that were derived at the center of the time span. The right
panel has had all baselines counter-rotated by a best-fit set of phases for each accumulation period. The
coherent sum of the visibility vectors had a magnitude of 99.99% as large as the sum of the incoherent
magnitudes.



