

## **DBBC3** Testing for APEX and Pico Veleta

Alan Roy Sven Dornbusch Gino Tuccari Jan Wagner Helge Rottmann

MPIfR / Istituto di Radioastronomia



### **Test Procedures**

#### 1 Timing Stability

Monitor 1 PPS output from firmware vs 1 PPS input to detect cycle slips Clock synthesizer stability Measure system phase stability end-to-end Verify UTC timestamp in VDIF header Check for delay jumps in recording

#### 2 Analogue Input Components

IF conditioning module characteristics Headroom Mixer LO power requirement for downconversion Total system bandpass characterization Noise figure

#### 3 Digital Transmission Integrity and Processing Correctness

Examine state counts of 8 bits from sampler

Examine state counts of 2 bits after thresholding

Examine 1 PPS rise time

Verify total power spectrum clean of artifacts

Verify 8 Gbps correct transmission

Verify OCT-D filter shape

Verify VDIF packet stream correctly formatted, no gaps, in time order, no stream mixing

#### 4 Reliability

Cooling

Sustained recording test for infrequent errors.

#### 5 Zero-Baseline Test

Check analogue correlation coefficient from noise source splitting DBBC3 – DBBC3 Digital Correlation Coefficient for Partially Correlated Noise DBBC3 – R2DBE Digital Correlation Coefficient for 100 % Correlated Noise

#### 6 On-Sky Fringe Test

Kashima – Onsala Test



Monitor 1 PPS Output from Firmware vs 1 PPS Input to Detect Cycle Slips



- GPS-FMOUT for APEX DBBC3 during EHT 2017 run
- No cycle slips over 11 days; a 10 MHz slip would make 100 ns step.
- The counter was recabled to the R2DBE FMOUT on April 13



Timing Stability: Sampler Clock on Spectrum Analyzer



- SSB phase noise integrated 1 kHz to 100 kHz offset  $\rightarrow$  3.9° RMS random phase jitter
- Minimal loss but anywal seems a bit high since doesn't include noise < 1 kHz offset
- Next use FFT analyzer to examine closer offsets from carrier



Timing Stability:

### Sampler Clock on FFT Analyzer





Timing Stability:

Sampler Clock on FFT Analyzer



Valon comparison set to 2048 MHz









#### vdiftimecheckUDP:

- VDIF header timestamps are correctly decoded
- Agreement with system time on the Mark 6 from NTP
- Differences typically milliseconds.

#### Check for Delay Jumps in Recording:

Long history of recordings over many experiments  $\rightarrow$  no delay jumps



### Analogue Conditioning



DBBC3 GCoMo

DBBC3 GCoMo



### Analogue Conditioning:



#### Analogue Conditioning Module for DBBC3 at APEX:

4-12 GHz IF in from receiver

Gain, 5-9 GHz BPF, impedance matching, downconversion (in GCoMo)

0-4 GHz gain, baseband out to DBBC3 GCoMo







## Analogue Conditioning: Headroom Design

Max-Planck-Institut für Radioastronomie



Design rule: Stay  $\geq$  15 dB below 1 dB compression point



-20

Input GCoMo Total Power Counts / units



### Analogue Conditioning: Linearity and Operating Point





### Analogue Conditioning: Linearity and Operating Point



### Analogue Conditioning: Mixer LO Power Requirement

Max-Planck-Institut

für Radioastronomie



Operating point for LO power, mixer in saturation



### Analogue Conditioning: Analogue Passband Shape

Passband at 0-4 GHz GCoMo Input after downconversion from 5-9 GHz IF source: nearly flat noise 0-14 GHz



LO fundamental at 4524 MHz before doubler breaking through mixer to IF

Gets removed by 0-4 GHz anti-aliasing LPF before sampler



| 8 bit state counts:        | All lines active, none tied high or low                                                                                                |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| 2 bit state counts:        | Values after thresholding typically 16 % 34 % 34 % 16 %                                                                                |  |
| Total power spectrum:      | Clean of artifacts                                                                                                                     |  |
| Analysis of recorded VDIF: | No missing packets,<br>No out of order packets,<br>ADC thread re-interleaving done correctly,<br>Data validity is high on DiFX/fourfit |  |



- Many weeks of run time on the APEX DBBC3:
  - No firmware instability (eg no loss of sync, no delay jumps, no hangs). Ten DBBC3's in field operations: not much support requested from HAT-Lab
- Many hours of analysis of the output 10 GE data streams on protocol analyzer: no errors, no packets out of order.
- 2 % frame loss on Mark 6 recordings fixed with Mark 6 tuning
- Cooling: FPGA die temperatures 49 °C to 57 °C for ambient temp 23 °C to 29 °C. Max spec 120 °C. Comfortably low.



N1

10 dB

Splitter

ETI P200518-2

For partially correlated noise:



IFA

IFB

I IFC

DBBC3

where  $T_A$  = antenna temperatures

 $T_S$  = system temperatures

 $\epsilon$  = efficiency, typical systems ~ 0.5 allow for quantization and processing losses.

Use  $\varepsilon = 1$  here to give analogue input correlation coefficient.

### **Zero Baseline Test:** zerocorr analysis example for $\rho_0 = 0.336$

Max-Planck-Institut

für Radioastronomie



**Zero Baseline Test:** zerocorr analysis example for  $p_0 = 0.336$ 



Max-Planck-Institut

für Radioastronomie

Efficiency of each DBBC IF: 87 % to 94 %



For 100 % correlated noise:



17 dB

For partially correlated noise:







**Zero Baseline Test:** zerocorr analysis example for  $p_0 = 0.336$ 



Max-Planck-Institut

für Radioastronomie

Efficiency of each backend: 90 % to 93 %



# On-Sky Fringe Test: Kashima - Onsala

| People:           | Mamoru Sekido<br>Kazuhiro Takefuji N<br>Karl-Åke Johanssor<br>Simon Casey<br>Rüdiger Haas<br>Gino Tuccari<br>Sven Dornbusch | NICT, Kashima Space Technology Centre, Japan<br>IICT, Kashima Space Technology Centre, Japan<br>Onsala Space Observatory, Sweden<br>Onsala Space Observatory, Sweden<br>Onsala Space Observatory, Sweden<br>MPIfR<br>MPIfR |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date:             | 27.03.2018, 19 h observing track                                                                                            |                                                                                                                                                                                                                            |  |
| Stations:         | Kashima 34 m<br>Onsala 13.2 m twin telescope (ONSA 13NE)                                                                    |                                                                                                                                                                                                                            |  |
| Targets:          | 203 radio sources, 300 s each, broadband radio source survey                                                                |                                                                                                                                                                                                                            |  |
| Frequency Setup:  | 4x 1 GHz bands in range 3 GHz to 11 GHz<br>Dual linear polarization<br>1 bit sampling<br>16.384 Gbps data rate              |                                                                                                                                                                                                                            |  |
| Data Acquisition: | Japanese DAS: K6 GALAS (at Kashima)<br>DBBC3 running OCT firmware (at Onsala)                                               |                                                                                                                                                                                                                            |  |
| Correlation:      | Kashima / GICO3 s                                                                                                           | oftware correlator (NICT)                                                                                                                                                                                                  |  |



### On-Sky Fringe Test: Kashima - Onsala













# DBBC History in EHT at APEX

#### Session History:

| 2009 Mar  | Project start VLBI at APEX                                  |          |               |  |
|-----------|-------------------------------------------------------------|----------|---------------|--|
| 2011 Mar  | Install DBBC2                                               |          |               |  |
| 2011 Mar  | EHT 2011 campaign (No APEX fringes)                         | 2 Gbps   | 1x Mark 5C    |  |
| 2012 May  | First APEX fringes                                          | 2 Gbps   | 1x Mark 5C    |  |
| 2013 Mar  | EHT 2013 campaign                                           | 4 Gbps   | 2x Mark 5C    |  |
| 2015 Jan  | First fringes to ALMA (ALMA - APEX)                         |          |               |  |
| 2015 Jan  | First fringes to SPT (SPT – APEX)                           |          |               |  |
| 2015 Mar  | EHT 2015 campaign                                           | 16 Gbps  | 2x Mark 6     |  |
| 2015 Mar  | Fringe test 340 GHz (APEX-Pico Veleta, APEX-SM <sup>-</sup> | ГО)      |               |  |
| 2015 Jul  | ALMA phasing commissioning 230 GHz APEX-ALMA-SMA-JCMT       |          |               |  |
| 2015 Jul  | ALMA phasing commissioning 340 GHz APEX-ALM                 | A        |               |  |
| 2016 July | DBBC2 to Bonn for upgrade to DBBC3                          |          |               |  |
| 2016 Nov  | Fringe test for PI230 at APEX (2x R2DBE)                    |          |               |  |
| 2017 Apr  | Install DBBC3                                               |          |               |  |
| 2017 Apr  | EHT 2017 campaign (parallel DBBC3 / R2DBE)                  | (32 Gbps | 2x Mark 6) x2 |  |
| 2017 Apr  | Return DBBC3 to Bonn for refinement                         |          |               |  |
| 2018 Apr  | EHT 2018 campaign                                           | 64 Gbps  | 4x Mark 6     |  |
| 2018 Ѕер  | Now: ready to re-install DBBC3 at APEX and Pico \           | /eleta   |               |  |
| 2018 Oct  | EHT 345 GHz Test                                            |          |               |  |