
A 16 channel FFT multiplexer

G. Comoretto1, A. Russo1, G. Tuccari2

1INAF - Osservatorio Astrofisico di Arcetri
2INAF - Istituto di Radioastronomia, sez. di Noto

Arcetri Technical Report N◦ 1/2009

Abstract
A common problem in radio applications is the need to divide a larger bandwidth into smaller, con-
tiguous frequency channels, in order to analyze, transmit, or store the signal using slower equipments.

Here a frequency multiplexer based on a polyphase filter and FFT structure is described. The input
signal has a 512 MHz bandwidth, sampled by a fast 1.024 GS/s ADC, and the output signals are 15
parallel VLBI data streams, with a bandwidth of 32 MHz each. Both input and output signals are real.

The instrument is implemented as a single CORE2 board on the DBBC VLBI digital data acquisition
terminal.

1 Problem definition

A common problem in signal processing is the so called multiplexing in frequency, in which a wideband
signal is divided into possibly contiguous sub-bands (here channels), each one representing a portion of
the input bandwidth.

In this way it is possible to resample each channel at a fraction of the input sampling frequency, so
that it could be recorded, analyzed, etc. by slower, and simpler, electronics. As electronics complexity
usually increases quadratically with sampling frequency, it is often convenient to treat the signal with N
parallel components, one for each frequency channel, than with a single, but N times faster, component,
or with N parallel components each one analyzing a fraction of the input samples (multiplexing in time).

For example, a multiplexed in time spectrometer with a given resolution of 1000 spectral points can be
built using N identical spectrometers, each with 1000 spectral points and fed with a contiguos segment of
samples (e.g. 1 ms each). After N periods, a spectrum of the whole dataset is reconstructed by averaging
the N individual spectra. Using a division in frequency approach, each spectrometer analyzes only a
subset 1/N of the input frequency range, and needs just 1000/N spectral points.

A simple way to perform the multiplexing in frequency operation is thus quite useful. The usual
approach is to use N individual heterodyne receivers, each one tuned to extract a given portion of the
input band. In recent years, approaches based on the Fourier transform algorithm are becoming popular,
due to their intrinsic simplicity. The so called ”polyphase filter” concept, that allows to shape the band
of the spectral channels in a controlled way, and the use of fast digital devices, is used to overcome the
problem of poor band edges and limited channel-to-channel insulation of the standard Fourier transform.

This work describes the implementation of a FFT based N = 16 band splitter to be implemented
in the digital Baseband Converter (DBBC) hardware developed by the EVN. The DBBC is a modular
system composed of 1 to 4 fast ADCs, with an input bandwidht of 0.5 to 1 GHz each, that interfaces
with the MK5a VLBI recorder. Data processing is performed by up to 16 FPGA-based boards. The
proposed implementation can be used for VLBI recording of a wideband signal, up to 470 MHz, using up
to 15 VLBI data streams each 32 MHz wide (nominal). The implementation is very compact, using just
a single CORE2 processing board.

The problem is described mathematically in chapter 2, and the actual implementation is described in
chapter 3.

8

1024 MHz512 MHz

16 15 14 13 12 11 10 9 7 6 5 4 3 2 01

768 MHz640 MHz 896 MHz

0 16151413121110987654321

128 MHz 384 MHz 512 MHz256 MHz

Figure 1: Conceptual description of the signal processing in the polyphase filterbank for an input signal
in the 1st Nyquist range (0 to 512 MHz) and in the 2nd Nyquist range (512 to 1024 MHz)

In fig. 1 the signal processing is shown in the frequency domain. The input signal, either in the
frequency range 0-512 MHz (upper graph), or in the 512-1024 MHz range (lower graph) is splitted into
17 spectral bands. Band 16 is discarded, and band 0, with half bandwidth, is just filtered. Channels are
placed side-by-side, with a small unusable portion between them.

1

2 Mathematical formulation

The FFT frequency divider must provide 16 (15 usable) real outputs at 1/16 sample rate from a time
multiplexed real input.

The real input format is a 8x data stream, in which 8 consecutive samples are presented at each clock
cycle to the system. The system clock is thus 1/8 of the sampler clock, and 2 times the output data
rate. As an output sample is produced every two clock cycles, it is possible to perform the computation
separately on odd and even samples.

The mathematical processing will be first analyzed in the most direct form. For each output channel
k, k = 0 . . . 15, the signal will be:

• multiplied by a complex exponential, exp(−2πijk/32), where j is the time index of the input data
stream, in units of the sampler clock fc

• filtered by a finite impulsive response (FIR) filter, with a low pass response and a cut-off frequency
of fc/64

• decimated by a factor of 16. The resulting data rate is fo = fc/16, and the filtered data occupies
the frequency interval [−fo/4, fo/4]

• upconverted by fo/4, by multiplying the complex data stream by exp(2πil/4), with l the time index
of the output data stream, in units of the output clock fo. The frequency interval extends from 0
to fo/2.

• converted to real, discarding the imaginary part. The output data stream Xk is correctly sampled,
without aliasing, as there are no frequency components above fo/2 and at negative frequencies.

The net result is that each output data stream, k corresponds to a frequency slot in the range
(k − 1/2)fc/32 to (k + 1/2)fc/32, converted to the upper sideband. The stream with k = 0 represents
the portion of the input spectrum with f < fc/32, and a equivalent portion near fc/2 is not present in
any stream.

The direct computation described above is very inefficient. Most of the intermediate results are dis-
carded, or computed multiple times. Performing the first multiplication before the filtering forces the
latter to be performed on complex, instead of real, values. The frequency conversion for all output
channels can be performed more efficiently using a Fast Fourier Transform algorithm. Therefore the im-
plementation has been completely modified, at the point that the above algorithm is barely recognizable.

The overall computation must always correspond, however, to the formula

Xk(l) = Re

[

exp
(π

2
il

)

∑

p

x(Nl − p)t(p) exp

(

−2πi
(Nl − p)k

2N

)

]

(1)

where N is the number of output channels, x(i) are the input samples, zk(l) are the output samples
(decimated) for channel k, and t(p) is the impulse response for the filter.

2.1 Polyphase filtering

If x(j) is the input data stream, and assuming that we want to divide it into N independent frequency
slots, after the frequency conversion we obtain for the data stream k, k = 0 . . . (N − 1) the signal

x′

k(j) = x(j) exp

(

2πi
−jk

2N

)

(2)

After filtering x′(j) using a filter with impulsive response t(p) (in the time domain), we obtain

xk”(j) =
∑

p

x′

k(j − p)t(p) =
∑

p

x(j − p) exp

(

−2πi
jk

2N

)

exp

(

2πi
pk

2N

)

(3)

2

If the filtered signal is computed only a time j = Nl, i.e. is decimated by a factor N , and the index
p for the tap is decomposed as p = q + 2Nr, with q = 0, . . . 2N , the above formula can be rewritten as

xk”(l) = (−1)lk

2N−1
∑

q=0

yq(l) exp

(

2πi
qk

2N

)

(4)

yq(l) =
∑

r

x (Nl − q − 2Nr) t(q + 2Nr) (5)

The first operation (apart for the alternating sign) is a Fourier transform of length 2N , and the second
is a series of 2N short filters, each one with tap coefficients that are a subset of the original ones. The
alternate signs in the Fourier transform produce a frequency reversal in the output channels with k odd,
but this can be easily corrected in the conversion to real stage.

2.2 Fourier transform

The Fourier transform can be further optimized by considering that the clock frequency is twice the
desired output sample frequency, and that the input signal is real.

2.2.1 Decimation in time FFT

In a division-in-time architecture, odd and even samples are processed separately by two half length
transforms, and then combined together.

(−1)lkxk”(l) =

N−1
∑

q=0

y2q(l) exp

(

2πi
qk

N

)

+

N−1
∑

q=0

y2q+1(l) exp

(

2πi
(q + 1/2)k

N

)

(6)

= ze
k(l) + exp

(

2πi
k

2N

)

zo
k(l) (7)

ze
k(l) =

N−1
∑

q=0

y2q(l) exp

(

2πi
qk

N

)

(8)

zo
k(l) =

N−1
∑

q=0

y2q+1(l) exp

(

2πi
qk

N

)

(9)

Only values of k ≤ N must be computed, so only one leg of the ”butterfly computation” (that with
the + sign) needs to be computed, as described in the above equation.

As yq is real, the quantities ze
k and zo

k are hermitian, i.e. zN−k = z∗k , where the asterisk denotes the
complex conjugate. z0 and zN are real. The FFT processor takes N real inputs, and delivers N − 1
complex plus 2 real outputs.

2.2.2 Winograd Fourier Transform algorithms

The Winograd short-length FFT is an algorithm that decomposes the Fourier Transform into three
matrices, represented as:

−→
X = TN · −→x = BNDNAN · −→x (10)

where BN and AN are incidence matrices containing only numbers 1, 0 and −1: multiplications by these
matrices can be computed with only additions and subtractions. DN is a diagonal matrix and thus
requires at most N multiplications. These features minimize the multiplicative complexity. Practical
algorithms have been written for several short lengths: 2, 3, 4, 5, 7, 8, 9 and 16. Table 1 summarizes the
number of multiplications and additions used to compute DFT for these small N, including the ones for
W 0

N = 1, with W k
N = exp

(

2πik
N

)

and k = 0 . . . (N − 1) [3][5].
Larger numbers algorithms can be obtained for N having more than one prime divisor. In those cases

the computation of DFT of N = N1 + N2 points can be decomposed into computing the DFT for N1

3

N multiplications multiplications by W 0
N additions

2 0 2 2
3 2 1 6
4 0 4 8
5 5 1 17
7 8 1 36
8 2 6 26
9 12 1 44
16 10 8 74

Table 1: DFT for small N

points in which each multiplication is replaced by computing the DFT of N2 points. But for large N
a direct application of the Winograd FFT algorithm entails a prohibitively large number of additions.
However hybrid strategies can be adopted using small-size Winograd algorithms and FFT algorithm
based stages.

2.3 Conversion to real

The output real signal is given by

Xk(l) = Re
[

exp
(π

2
il

)

xk”(l)
]

(11)

The FFT processor produces, every two cycles, the two complex values ze
k and zo

k. For each k, from
these two values two real samples Xk and XN−k can be computed, using relations 7, 11 and the fact that
zN−k = z∗k:

Xk(l) = (−1)lkRe

(

exp
(π

2
il

)

[

ze
k(l) + exp

(

2πi
k

2N

)

zo
k(l)

])

(12)

XN−k(l) = (−1)lkRe

(

exp
(π

2
il

)

[

ze∗
k (l) − exp

(

−2πi
k

2N

)

zo∗
k (l)

])

(13)

In the second relation, it has been assumed that N is even, for simplicity.
The first exponential assumes only the values ±1 and ±i, and the sign can be absorbed in the

first factor. The second exponential corresponds to a linear combination of the twiddle factors, W r
k =

cos(πik/N) and W i
k = sin(πik/N) Using the suffixes r and i to denote the real and imaginary parts of

the quantities yk, one obtains, for l even:

Xk(l) = (−1)lk+a
(

zer
k (l) + W r

k zor
k (l) − W i

kzoi
k (l)

)

(14)

XN−k(l) = (−1)lk+a
(

zer
k (l) − W r

k zor
k (l) + W i

kzoi
k (l)

)

(15)

The term a in the first exponent takes into account the sign of the first exponential: a = 0 for l = 0, 1
module 4, and a = 1 for l = 2, 3 module 4. The corresponding relations for l odd are:

Xk(l) = (−1)lk+a
(

−zei
k (l) − W i

kzor
k (l) − W r

k zoi
k (l)

)

(16)

XN−k(l) = (−1)lk+a
(

zei
k (l) − W i

kzor
k (l) − W r

k zoi
k (l)

)

(17)

The cases with k = 0 and k = N are peculiar, as the input signal is real and the bandwidth is half
that of the other channels. Frequency translation is not required, and usually applied only to the k = N
channel. In most applications, these signals are just discarded, considering also that the extremes of the

4

input bandwidth are usually affected by other ill factors (e.g. rolloff and aliasing in the input analog
filter).

For k = 0 the output signal is just the sum of the odd and even samples, X0(l) = zo
0(l) + ze

0(l). The
signal is just the first 1/2N portion of the input band, low-pass filtered.

For k = N/2, ye and yo are real, and XN (l) = (−1)a(zer
n (l)−zor

n (l). If the alternating sign is omitted,
the frequency band is reversed, with output frequency zero corresponding to the higher sampler frequency.
If it is present, the band is represented in natural order.

Both channels have a sample frequency that is half that of the remaining channels, as they span a
frequency range up to frequency 1/2N . Samples are produced during the “even” cycle, and last for two
cycles of the output clock.

3 Implementation

The algorithm has been implemented on CORE1 and CORE2 boards, but due to resource limitations
the final, fully operating design has been implemented only in the CORE2. These boards host a single
large FPGA, respectively of the Xilinx Virtex2 and Virtex4 families.

The code has entirely been written in the VHDL programming language, avoiding any specific depen-
dance on the Xilinx hardware. The design functionality has been extensively simulated using the Aldec
FPGA tools, that provide also a programming environment and a common interface to all the other tools.

The code has been converted to a Xilinx netlist using the Synplify synthesis program, and then
translated to a physical design in the target chip by proprietary tools. Although the Xilinx synthesis tool
does not detect any formal error in the code, the synthesized code presents several errors, especially in
the ROM tables used for FFT twiddle coefficients, and the resulting design is unusable. Use of a good
synthesis tool is therefore mandatory.

The device has been designed as a black box, with generic input and output signals, independent from
the details of the chip input/output structure. A framework structure, dealing with physical board details,
clock distribution, signal interfacing, and computer programming has been developed separately[1], and
merged with the design after simulation.

The high speed input/output bus, carrying ADC signals, require particular care to meet timing
constrains. A specific constrain file has been used to force all components operating at 256 MHz to be
placed in specific chip locations.

3.1 Polyphase filter

The low-pass filter response is probably the most important parameter of the instrument, as it deter-
mines passband flatness, transition region between channels (i.e. usable portion of the input band), and
insulation among different channels. The available hardware resources impose constrains on the number
of available tap coefficients, and on the resolution of their representations. FPGAs contain hardware
multipliers, but their number is constrained, and multiplication by a fixed coefficient of typically a small
size is better performed using a multiplier implemented with discrete logic.

For practical designs the number fo available taps is of the order of a few 100s, with tap representation
using 8-12 bits.

The stopband is determined mainly by the number of bits in the tap coefficients representation. To
accurately cancel off-band signals, the individual tap coefficients must be close to the design specification.
Considering the typical performance of a VLBI terminal, an insulation of 40-45 dB has been considered
sufficient. This can be achieved using 8 bit coefficients. Each additional bit can increase the stopband
rejection by 6 dB, but the filter size must also be increased.

In table 2 three filters have been calculated. For each filter, the length, stopband and passband have
been fixed, and the tap coefficients have been computed using the Remez algorithm. The passband ripple
has been kept constant, while attempting to increase the stopband attenuation by giving a much higher
weight to the stopband specification in the fitting algorithm.

The tap coefficients have then been truncated to a number of bits comprised between 8 and 12, and
the solution with a degradation of less than 4 dB with respect to the infinite resolution has been chosen.

In figures 2 the response for the three filters has been plotted.

5

Length Tap res. Pass Stop Usable Ripple Min rej. Typ rej
(taps) (bits) (fc) (fc) BW (dB) (dB) (dB)
256 ∞ 0.012 0.019 77% 0.5 45 45
256 8 0.012 0.019 75% 0.8 42 45
384 ∞ 0.013 0.0183 83% 0.6 52 52
384 9 0.013 0.0183 85% 0.6 48 52
512 ∞ 0.0135 0.0178 86% 0.6 58 58
512 10 0.0135 0.0178 86% 0.06 54 58

Table 2: Parameters of the prototype low-pass filter, 8, 9 and 10 bit version

0 0.1 0.2 0.3 0.4 0.5
-60

-55

-50

-45

-40

Frequency (normalized)

0 0.2 0.4 0.6 0.8 1

-4

-2

0

Frequency / cutoff

Figure 2: Stopband and passband response of prototype low-pass filter for 8 bit, 256 taps (blue), 9 bit,
384 taps (red) and 10 bit, 512 taps (green)

The final design adopts the filter with 512 taps, for a minimum stopband rejection of 54 dB.
The filter tap coefficients have been converted to a ”package” VHDL file. The package provides a

series of constant values, of which the most important are the number of taps and the number of bits in
the representation. A function returns the tap coefficient value, given the tap index.

The VHDL file that implements the polyphase filter has been parameterized using these values, so
different filters can be obtained just by changing the package file.

The top level file instantiates an array of 8 legs, one for each of th 8 time multiplexed samples in the
input data stream. In each leg, the input sample feeds 4 FIR filters, one for input index p and the second
for index p + N .

On odd and even cycles, tap coefficients are changed in order to compute both yo(p) and ye(p). These
values are presented in turn to the FFT processor, that computes on alternate cycles the quantities zo

and ze of eq. 7.
The maximum size of a tap product is equal to 7 + nb, with nb the number of bits in the tap

representation. In each of the 32 legs, however, only the central taps have the full size, and the total
filter output has a size of at most 8 + nb. For white noise, the RMS amplitude of the signal is increased
roughly by nb − 1 bits. Even for the 10 bit filter, this means that if the signal can be represented with
the 8 input bits, the filter output can be represented using about 17 bits. The input word size of the
FFT processor, 18 bit, is never exceeded.

To prevent overflow in the FFT stage, however, it is advisable to keep at least 2 bits of growth margin.

6

In the filter implementations with nb > 8, 1 or 2 bits are thus truncated. Truncation introduces a DC
bias in the system, that affects the X0 output. As this is usually discarded, no correction for the bias
has been considered. NOTE: this is not implemented in the current FFT design.

3.2 FFT processor

The FFT processor is a standard design, with 16 inputs (real) and 16 outputs (complex). The internal
design has been optimized to avoid unnecessary computation of null imaginary components, and of unused
outputs.

Two designs have been considered: a standard division-in-time FFT algorithm, and a base-16 short
length Winograd algorithm. Due to short development time, the simpler DIT FFT has been adopted.
The Winograd algorithm may be added in a second time. It uses less multipliers, and less processing
stages, thus reducing rounding errors. The spared multipliers can be used for other components in the
chip, or for increased filter performance.

Both FFT designs include an overflow detection system. If an overflow occurs in any stage, the ovf

signal is set to 1. The signal is latched and can be read using the control register. It is also routed to
one of the output LEDs, in order to have a visual feedback during operations.

3.2.1 Division in time FFT

The division in time FFT is composed of four stages. The first stage has all real inputs, and since the
twiddle coefficients are all ±1 no multipliers are needed, and the result is still real. The second stage has
complex outputs, but still no multipliers are needed (twiddle coefficients ±1 and ±i). These two stages
are implemented with dedicated VHDL files.

The remaining two stages use a parametrized VHDL code, allowing for easy implementation of FFT
blocks of any size.

Twiddle coefficients are computed using a dedicated VHDL package.
The last stage has only the first half of its outputs connected. No special code has been written to

exploit this, as the synthesis routine automatically simplifies the design deleting the unused components.

3.2.2 Winograd algorithm

An alternative implementation of the FFT has been developed using the Winograd 16 points algorithm.
The used matrices B16, A16 and D16 are shown in figures 3 and 4 [4].

Figure 3: B16 16× 18 matrix of 16 Winograd short length algorithm.

The resulting VHDL code is quite complex, not having the recursive structure of the FFT. The
matrices AN and BN aren’t squared, their sizes are respectively: 18X16 and 16X18. Consequently the
input data is expanded slightly when multiplied by AN matrix and contracted back to the original size
when multiplied by theBN matrix. The advantage of this method is on the total resource usage, that is
considerably reduced.

7

Figure 4: D16 diagonal elements of 16 Winograd short length algorithm, where u = 2π/N with N = 16,
and A16 18× 16 matrix

3.3 Conversion to real

The output stage combines together the odd ad even FFT results, zK , to produce the two output streams
Xk. Examining equations 14-17, it is apparent that the result is the sum of either the real or imaginary
part of ye

k, and a linear combination of the real and imaginary part of yo
k, weighted with the A simple

architecture to implement this is described in figure 5.
The module requires as input the phase of the conversion exponential, i.e. the index l module 4, and

the odd/even clock. The resulting signal is a value ranging cyclically from 9 to 7, incremented at each
clock.

The even input, ye
k(l), is delayed by one clock, to put it in phase with the odd input, and the phase

is used to select the real or imaginary part. and to change its sign as needed. Manipulating the sign, it
is also possible to convert the frequency scale of the output signal from USB to LSB.

A 8x2 memory is used to select the coefficients for the real and imaginary part of the odd input,
including the appropriate sign. The two multiplications are performed using 18 bit hard multipliers. The
three products are then summed together, and stored in two output registers. The two output streams
are out of phase by one clock, but can be re-phased in the following stages, by enabling subsequent
operations only on even cycles.

3.4 Output stage

The Xk output signals are represented with 18 bit, much more than needed, and may have widely different
amplitudes if the input band is not perfectly equalized. Therefore for each signal one must:

• Measure the total power integrated over the output band, and some time interval (typically 1
second)

• Quantize the signal with 1 or 2 bit representation, as required by the VLBI correlator, using
threshold adjustment appropriate for the measured RMS amplitude

The output coding is defined in the MARK5 standard definition document. Each output sample is
coded as a 2 bit quantity. Bit with lower index is the sign bit, and the one with higher index is the
magnitude bit. Code representation is binary offset, as shown in table 3, together with the expected
statistics in each code for a Gaussian noise.

Output samples are available on the HSO bus, sent over the output VSI connectors. Bits HSO(00–31)
are used for the 16 output channels 0 to 15, with channel 16 not used. Channel 0 is sent to lines HSO(00)
(sign) and HSO(01) (magnitude), and channel 15 to lines HSO(30) and HSO(31).

8

Twiddle mem
18x8x2

+

+

E

E

E

E

E

phase

odd/even
phase odd/even+/−1

Re
Im Y(k)

Y(8−k)

Combiner

Figure 5: Structure of the conversion-to-real block

-high -low +low +high
sign/magnitude code 00 01 10 11
Statistics for optimal quantization (%) 18.2 31.8 31.8 18.2

Table 3: Coding and statistics for output samples

The VSI clock runs at fixed 64 MHz, with the rising edge exactly at the center of each sample.
VSI1PPS is held high for one cycle every second (64 million samples). VSI valid bit (PVALID) is always
set.

All signals for the second VSI bus are copied from the corresponding HSO input lines of the board.
In figure 3.4 the output of channel 9 (752 to 720 MHz) is shown for an input tone at 748 MHz. The

traces show the monitor (DAC) output, and the sign, magnitude and clock signals on the VSI bus. The
output signal period is 250 ns, as expected. The cursor is placed on a transition of the magnitude-sign
bits, corresponding to the falling edge of the VSI clock.

3.5 Output LEDs

The board has 16 user-programmable LEDs. They have been assigned to the functions described in table
4

LED 01 is set when the register 63 of the board is addressed, and cleared when any other register is
addressed. It resets all DLL’s in the board. This signal is completely asyncronous, as the clock signal is
not available during DLL reset, and must be explicitly cleared to allow the board to operate.

Led 02, 03 and 09–12 are used to monitor the status of the internal DLL’s
Led 04 blinks at 1 Hz during normal operation, in sync with system 1PPS.
Led 05 can be used to quickly adjust input signal level, in order to avoid saturation in the FFT block.
Leds 06, 07 and 08 can be used to check the control interface. Led 06 should blink at each computer

access, and 07-08 copy bits 20-19 of the PCI7200 output register (not used for the addressing scheme).
Leds 13–16 can be used to check the correct addressing of the board. At the moment the board

responds to the fixed address 0001, but in future releases the address will be set using the rotary switch
on the board.

9

Figure 6: Example fo output converted signals, for an output tone at 4 MHz. From top: analog monitor,
sign, magnitude, clock

4 Programming interface

The filterbank requires an interface with the control computer, in order to be able to read total power
values, and to program the equalization scale factors. Other required functionalities include the ability
to synchronize to an external PPS signal, and monitor of the overflow status.

The interface is composed of a series of programmable registers, on the FPGA chip, and a set of
programming routines, written in C++ using an object oriented methodology.

4.1 Hardware description

In the adopted framework architecture, each chip contains up to 4 independent programming blocks, of
64 words each. The board is identified by a 5 bit address, so a complete address is composed of 4 parts,
specified as the upper 16 bits of the PCI7200 output word wd:

LED Fucntion
01 PLL Reset signal
02 LOCK status for DLL at 256 MHz
03 LOCK status for DLL at 128 MHz
04 1PPS: set for 0.1 second every internal 1PPS
05 Overflow: set if some overflow condition detected
06 Bus Activity: set for 0.1 s at each computer access
08-07 Bit 20-19 of PCI7200 output register
12-09 Status word for DLL at 128 MHz
16-13 Address selector (from rotary switch)

Table 4: Assignment for board LEDs

10

• Board address: bits 31–27 of wd

• Register address: bits 26–21 of wd

• Block address: bits 18-17 of wd

• Read enable bit: bit wd(16)

The read enable bit specifies that the operation is a read only operation, i.e. registers are not modified
but only read. A read operation is always assumed at each computer access, i.e. the addressed register
is always placed on the PCI7200 input bus.

The filterbank block has an address space of 32 read/write registers, at block address 0. Only registers
0, and 16–31 are actually implemented, the remaining do not physically exist. They are listed in tab. 5.

Register Write value Read value
0 Control register Status

1-15 unused
16-31 Threshold level TP read

Table 5: Programming interface

All write registers are 16 bit in size, even if not all bits are used, and all read registers are 32 bit wide.
Register 0 is used to program the control register, and read the status register. Its bit definition is

given in tab. 6.

Bit Control register value
3-0 Monitor DAC select
4 Input select: 0=ADC, 1=line
5 1PPS Sync enable

15-6 Generator frequency

Bit Status register value
8-0 Readback control register
9 Overflow
10 Total power ready
15 Total power overflow

others unused (set to 0)

Table 6: Control and status register interface

Bit 3-0 of the control register selects which channel output is sent to the monitor DAC output. This
is useful to observe e.g. a converted sinewave on an oscilloscope.

Bit 4 allows a sine generator to replace the input signal. The sinewave frequency is set using bits 15-6
of the control register, with a step of 0.5 MHz.

Bit 5 enables the 1PPS sync circuitry. When it is set, the internal 1PPS signal locks to the rising edge
of the incoming 1PPS. Once the circuitry is synced (usually by letting the enable high for more than a
second), this bit must be reset, or the internal 1PPS will follow any jitter in the input 1PPS, and the
number of clock cycles between successive pulses is not guaranteed to be always 128.000.000. When the
bit is cleared, the internal 1PPS is generated from the ADC clock.

Status bits 8-0 simply reflect the corresponding control bits. They can be used for simple write/read
checks of the interface. Bits 15, 10 and 9 are set when the specified event occurs (overflow or Total Power
End of Integration), and are latched until read. They are automatically cleared by the read operation.

Registers 16-31 refer to the output channels n−16. The write register sets the threshold value for the
magnitude bit in the hardware units. The read register reads the total power value, as a 32 bit signed
value. The total power meter integrates the signal between successive 1PPS pulses, and bit 10 of the
status register is set when results are available. Bit 15 is also set if an overflow has occurred in one or
more Total power meters.

Total power units are such that the square root of the value read corresponds to the RMS of the signal
in hardware units divided by 1.024. As the threshold optimal value for 2 bit quantization is 0.9076 times
its RMS value, the threshold value to be written in the threshold register is the square root of the total
power measurement multiplied by (0.9076/1.024). The corresponding statistics, for a Gaussian noise, is
given in tab. 3.

11

4.2 Control software

The control software has been developed using an object oriented structure. A general programming
interface for FPGA-based hardware has been developed for the ALMA based boards, and has been
adapted for the dBBC.

The basic objects in this package are:

• Cpld2Interface A generic interface that deals with the details of the communication with the
hardware (in our case with the parallel interface of the host computer). The name derives from the
programmable design that implements this interface on ALMA correlator boards.

• HardwareBlock, a generic piece of hardware that includes several programmable registers. A
HardwareBlock is instantiated specifying the Cpld2Interface used for communication, and an
address, specifying a board ID and a block index. In this way up to 4 different hardware blocks
can be hosted in the same FPGA. Each specific block (e.g. digital BBC, filterbank, spectrometer)
is subclassed form this class.

• Poly16 subclassed from HardwareBlock, implements a 16 channel polyphase filterbank

The Poly16 class implements the following methods:

• int TPRead(unsigned long results

) Read all the total power counters, in the array results, that must have i at least 16 elements
allocated.

• int SetGain(int gain

) Set thresholds using values specified in the array

• int SetGain() Set quantization thresholds performing a total power measurement and choosing
the right threshold values

• int Monitor(int chan) Select output DAC monitor channel

• int WaitTP() Wait for Total Power data to become available

• int SyncPps() Sync 1pps circuitry to the external 1PPS signal

This class has been used to create a small control program, that every second checks the total power
data, print them and dynamically adjusts the thresholds. It is listed in the code below.

int main(int argc, char* argv[])

{

Cpld2Interface intf; // Define the card, open it, etc

Poly16 poly(&intf, 0x1000); // Connect the object to card 1, chip 0

unsigned long tpData[16]; // Total power data

poly.SyncPps(); // Sync the internal 1pps to the input

poly.SetGain(); // Set thresholds according to signal

int j;

bool quit=false;

while (true) {

poly.SetGain(); // dynamically adjust thresholds

poly.WaitTP(); // Wait for TP results (every 1pps)

int flag = poly.TPRead(tpData); // flag != 0 means overflow

cout << (flag=0) << ‘‘:’’; // Print results

for (j=0; j<8; ++j) cout << ‘‘ ’’ << tpData[j]/1e6;

cout << endl << ‘‘ ’’;

12

for (j=8; j<16; ++j) cout << ‘‘ ’’ << tpData[j]/1e6;

cout << endl;

}

return 0;

}

References

[1] G. Comoretto, G. Tuccari: Reference design for the Digital BBC Architecture, Arcetri internal report
2/2008

[2] G. Comoretto, A. Russo: Software di comunicazione con il correlatore Altera Arcetri Internal Report
2/2007

[3] S. Winograd: On computing the Discrete Fourier Transform Proc. Nat. Acad. Sci. USA Vol. 73, No.
4, pp. 1005-1006, April 1976

[4] A. Russo: Spectroscopic Instrumentation for Radioastronomy PhD thesis, March 2009

[5] T. ToivonenNumber Theoretic Transform-Based Block Motion Estimation, Department of Electrical
Engineering, University of Oulu, Finland, Diploma Thesis, 2002

13

Contents

1 Problem definition 1

2 Mathematical formulation 2
2.1 Polyphase filtering . 2
2.2 Fourier transform . 3

2.2.1 Decimation in time FFT . 3
2.2.2 Winograd Fourier Transform algorithms . 3

2.3 Conversion to real . 4

3 Implementation 5
3.1 Polyphase filter . 5
3.2 FFT processor . 7

3.2.1 Division in time FFT . 7
3.2.2 Winograd algorithm . 7

3.3 Conversion to real . 8
3.4 Output stage . 8
3.5 Output LEDs . 9

4 Programming interface 10
4.1 Hardware description . 10
4.2 Control software . 12

14

