Usage of the DBBC3 firmware and software

EVN TOG Meeting 2023, Bonn

Sven Dornbusch, MPIfR

Max-Planck-Institut für Radioastronomie

MAX-PLANCK-GESELLSCHAFT

Content

- Observation Modes
- Preparations
 - Hardware Connections
 - Software Components
 - Configuration Files
- Startup Routine
- Post-Startup System Check
- Calibration

- DSC
- OCT
- DDC

- DSC
- OCT
- DDC

- Direct Sampling Conversion
- 4GHz Bandwidth/IF
- Produces four 4Gbit/s streams per IF
- Recombination of recorded streams required

- DSC
- OCT
- DDC

- (OCT)opus Mode
- 2 parallel FIR-Filters/IF
- Bandwidth of 256/512/1024/2048 MHz for each Filter
- Produces two output streams with up to 8Gbit/s each

- DSC
- OCT
- DDC

- DDC_V: (VGOS)
 - 8 tunable BBCs/IF with upper/lower sideband each
 - 32 MHz BW/sideband
 - Specialized filters for 32MHz
- DDC_U (Universal)
 - 16 tunable BBCs/IF with upper/lower sideband each
 - 2, 4, 8, 16, 32, 62, 128 MHz BW/sideband
- DDC_E (EVN)
 - 8 tunable BBCs/IF with upper/lower sideband each
 - 2, 4, 8, 16, 32, 62, 128 MHz BW/sideband
 - Improved filters

Preparations

Hardware Connections

- Necessary Connections on the Back:
 - 10 MHz •
 - 1 PPS
 - GPS
 - Signal Input 0-4 GHz
 - Or Signal Input 4-15 GHz
 - with Down conversion
 - Connect "Out (unfilt.)" to "0-4 GHz in"

Hardware Connections

- Ethernet Output:
 - 4 Ethernet Ports/IF
 - DDC_V/E: Port 0
 - DDC_U: Port 0 and 1
 - BBCs 1-8: Port 0
 - BBCs 9-16: Port 1
 - OCT: Port 0 and 2
 - Filter 1 Port 0
 - Filter 2 Port 2
 - DSC: Port 0-3

- Control Software
- Client
- Firmware
- Configuration Files
- Python Toolkit
- Field System

- Control Software
- Client
- Firmware
- Configuration Files
- Python Toolkit
- Field System

- Located in C:\DBBC\bin folder
- One exe-File for each Observation Mode:
 - DBBC3 Control DSC_v120.exe
 - DBBC3 Control OCT_D_v120.exe
 - DBBC3 Control DDC_V_v125.exe
 - DBBC3 Control DDC_E_v126.exe
 - DBBC3 Control DDC_U_v126.exe
- Link to each File on Desktop

- Control Software
- Client
- Firmware
- Configuration Files
- Python Toolkit
- Field System

- Located in C:\DBBC\bin folder
- DBBC client v4.exe
- Local Client used to communicate with Control Software
- Link on Desktop

- Control Software
- Client
- Firmware
- Configuration Files
- Python Toolkit
- Field System

- Located in C:\DBBC_CONF\FilesDBBC folder
- One bit-File for each Observation Mode:
 - dbbc3_dsc_2hv2_070922.bit
 - dbbc3_oct_D_2hv2_310822.bit
 - dbbc3_ddc-v125V-2hv2-120922.bit
 - dbbc3_ddc-v126E-2hv2_231022.bit
 - dbbc3_ddc_U_v126-2hv2_271122_2.bit

- Control Software
- Client
- Firmware
- Configuration Files
- Python Toolkit
- Field System

- Located in C:\DBBC_CONF folder
 - C:\DBBC_CONF\DSC_120 for DSC Mode
 - C:\DBBC_CONF\OCT_D_120 for OCT_D Mode
 - C:\DBBC_CONF for all DDC Modes
- Five types of configuration files
 - Main config file
 - Sampler config file
 - Core3H config files (one for each IF)
 - BBC config file (for DDC modes)
 - Filter tap files (for OCT_D mode)

Main Config File

Main Config File

 Init Part for Core3H-Boards 	config_adb3l.txt			
 Core3H Status: 3: Installed Core3H and Signal connected to IF 30: Installed Core3H and NO Signal connected 0: No Installed Core3H Core3H Firmware 	 3 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_1.fila10g COM3 3 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_2.fila10g COM4 30 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_3.fila10g COM5 30 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_4.fila10g COM6 0 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_5.fila10g COM7 0 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_6.fila10g COM8 0 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_6.fila10g COM8 			
Core3H Config File	0 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_8.fila10g COM1 3 4500 10 32000 COM11			
Serial COM Port	3 4500 10 32000 3 4500 10 32000 COM12 3 4500 10 32000 0 28000 0 28000 0 28000 0 28000 0 28000 CAT3 2048 134.104.30.223 224.0.0.255:25000 20			

Main Config File

Init Part for GCoMo-Modules	config_adb3l.txt
GCoMo Status:	3 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_1.fila10g COM3
• 3: Installed	3 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_2.fila10g COM4 30 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_3.fila10g COM5
O: Not Installed	30 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_4.fila10g COM6
 Synthesizer Frequency for Down Conversion 	0 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_5.fila10g COM7 0 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_6.fila10g COM8
• In MHz	0 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_7.fila10g COM9
• ½ of LO-Frequency	0 dbbc3_ddc-v126E-2hv2_231022.bit ddc_E_core3H_8.fila10g COM10
Attenuation for Synthesizer Frequency	3 4500 10 32000 COM11 3 4500 10 32000
• in dBm	3 4500 10 32000 COM12 3 4500 10 32000
 AGC Power Target 	0 28000
COM Part for Synthesizer Communication	0 28000
CONTPOL IOI Synthesizer Communication	0 28000
 2 IFs share one Synthesizer (with 2 Outputs each) 	0 28000
	CAT3 2048
	134.104.30.223
	224.0.0.255:25000
	20

Sampler Config File

 Example: adb3l_config.txt 	bistoff=1
 Static Part Do not Change Delay, offset and gain for each sampler command=board,sampler,value board[1-8] sampler[0-3] Value determined by Calibration Procedure 	reset SDA_on=1,0 SDA_on=1,1 SDA_on=1,2 SDA_on=1,3 SDA_on=2,0 SDA_on=2,1 SDA_on=2,2 SDA_on=2,3 delay=1,0,266 delay=1,1,454 delay=1,2,570 delay=1,3,758 offset=1,0,136 offset=1,1,122
	offset=1,2,123 offset=1,2,121 offset=1,3,105 gain=1,0,142 gain=1,2,122 gain=1,2,122 gain=1,3,150 delay=2,0,59 delay=2,1,375 delay=2,2,649 delay=2,3,729

•••

- Example: ddc_U_core3H_1.fila10g
 - vsi_samplerate: --
 - DDC_U/E: Change according to used BBC-bandwidth:
 - 128 MHz: vsi_samplerate 128000000
 - 64 MHz: vsi_samplerate 128000000 2
 - 32 MHz: vsi_samplerate 128000000 4
 - 16 MHz: vsi_samplerate 128000000 8
 - 8 MHz: vsi_samplerate 128000000 16
 - 4 MHz: vsi_samplerate 128000000 32
 - 2 MHz: vsi_samplerate 128000000 64
 - DDC_V: keep at vsi_samplerate 128000000 2
 - DSC/OCT_D: command not used

core3 init core3 mode pfb regwrite core3 0 0x0000000 regwrite core3 1 0xBFBFBFBF regwrite core3 9 1 reboot inputselect vsi1-2-3-4 vsi samplerate 128000000 splitmode on reset vdif frame 2 16 8000 ct=off tengbcfg eth0 ip=192.168.1.16 gateway=192.168.1.1 nm=27 tengbarp eth0 2 00:60:dd:42:38:e2 destination 0 192.168.1.2:46220 destination 1 none timesync start vdif sysstat

- Example: ddc_U_core3H_1.fila10g
 - regwrite core3 0 0x0000000 • vdif frame: regwrite core3 1 0xBFBFBFBF regwrite core3 9 1 • Bits/sample: default 2 reboot • #Channels/vdif frame: default 2x(#BBCs/Output Port) inputselect vsi1-2-3-4 change if using vsi bitmask to mask out channels! vsi samplerate 128000000 Not #Channels in total, be careful with DDC U! splitmode on reset Data-Bytes/Frame: default 8000 ٠ vdif frame 2 16 8000 ct=off • ct=off, do not change, Corner Turning not implemented on tengbcfg eth0 ip=192.168.1.16 gateway=192.168.1.1 nm=27 tengbarp eth0 2 00:60:dd:42:38:e2 DBBC3 destination 0 192.168.1.2:46220 destination 1 none timesync start vdif sysstat

core3_init core3_mode pfb

- Example: ddc_U_core3H_1.fila10g
 - Configuration of Ethernet Ports
 - tengbcfg: set source configuration for ethernet port
 - tengbarp: set the destination MAC-addresses for ethernet port and subnet
 - destination: set destination IP and Port for given output
 stream
 - set to none if output is not used

core3 init core3 mode pfb regwrite core3 0 0x0000000 regwrite core3 1 0xBFBFBFBF regwrite core3 9 1 reboot inputselect vsi1-2-3-4 vsi samplerate 128000000 splitmode on reset vdif frame 2 16 8000 ct=off tengbcfg eth0 ip=192.168.1.16 gateway=192.168.1.1 nm=27 tengbarp eth0 2 00:60:dd:42:38:e2 destination 0 192.168.1.2:46220 destination 1 none timesync start vdif sysstat

Core3H Config Files – Bitmask

- vsi_bitmask to mask out channels: -
- Take special care with DDC_U!:
 - vsi_bitmask mask2 mask1 mask2 mask1 mask1 = Bitmask for BBCs 1-8 mask2 = Bitmask for BBCs 9-16
- DDC_E:
 - vsi_bitmask mask1 mask1 mask1 mask1
- All 4 masks need to have the same number of bits
- If you mask out channels, always adjust the number of channels in the vdif_frame accordingly!
- More Info about setting the bitmask: https://deki.mpifr-bonn.mpg.de/Cooperations/DBBC3/DBBC3_FAQ?highlight=FAQ

```
core3 init
core3 mode pfb
regwrite core3 0 0x0000000
regwrite core3 1 0xBFBFBFBF
regwrite core3 9 1
reboot
inputselect vsi1-2-3-4
vsi samplerate 128000000
splitmode on
vsi bitmask 0x33333333 0x3333333 0x33333333 0x3333333
reset
vdif frame 2 16 8000 ct=off
tengbcfg eth0 ip=192.168.1.16 gateway=192.168.1.1 nm=27
tengbarp eth0 2 00:60:dd:42:38:e2
destination 0 192.168.1.2:46220
destination 1 none
timesync
start vdif
sysstat
```

Core3H Config Files – Change Thread ID

- To Change the Base Thread ID:
 - Calculate value: V = thread_Id * 2^16
 - regupdate vdif_header 3 V 0x03FF0000
 - This is the base thread ID for Port eth0
 - eth1 will have base thread ID + 1, and so on...

core3 init core3 mode pfb regwrite core3 0 0x0000000 regwrite core3 1 0xBFBFBFBF regwrite core3 9 1 reboot inputselect vsi1-2-3-4 vsi samplerate 12800000 splitmode on reset vdif frame 2 16 8000 ct=off regupdate vdif header 3 327680 0x03FF0000 tengbcfg eth0 ip=192.168.1.16 gateway=192.168.1.1 nm=27 tengbarp eth0 2 00:60:dd:42:38:e2 destination 0 192.168.1.2:46220 destination 1 none timesync start vdif sysstat

BBC Config File

• Initial Configuration for the BBCs:

- BBC Number (1-128)
- Frequency
- Bandwidth
- BBC Numbering for DDC_U:

Board 1	Board 2	Board 3	Board 4	Board 5	Board 6	Board 7	Board 8
1-8	9-16	17-24	25-32	33-40	41-48	49-56	57-64
65-72	73-80	81-88	89-96	97-104	105-112	113-120	121-128

1 300.0 128

...

Startup Routine

Startup Routine

- 1. Start Control Software on Desktop
- Load Firmware(Y/N) (Can be skipped if correct firmware already loaded)
- 3. Load Configuration(Y/N)
- 4. Connect with Client/Python Tool/FS
- 5. Perform Post-Startup System Checks
- 6. Ready for Observation

- 1. Check GCoMo Power Levels
- 2. Phasecheck
- 3. Check PPS Synchronization
- 4. Check Time Synchronization
- 5. Check Sampler Statistics
- 6. Check BBC Statistics

1. Check GCoMo Power Levels

- 2. Phasecheck
- 3. Check PPS Synchronization
- 4. Check Time Synchronization
- 5. Check Sampler Statistics
- 6. Check BBC Statistics

- Use **dbbcifa**, **dbbcifb**, ... commands to check if each used GCoMo has the correct power levels:
- dbbcifa/2,**20**,agc,**31433**,32000
 - GCoMo Input (1-Direct Input, 2-Down Conversion)
 - Attenuation level (ideally between 10-40)
 - Automatic Gain Control (agc AGC on, man AGC off)
 - Power Level (should close to power target)
 - Power Target (32000 ideal for 4 GHz Input)

- 1. Check GCoMo Power Levels
- 2. Phasecheck
- 3. Check PPS Synchronization
- 4. Check Time Synchronization
- 5. Check Sampler Statistics
- 6. Check BBC Statistics

• Command: checkphase

- This command will check if phases for the used samplers are correctly aligned
- If the check fails, make sure that the **GCoMo Power Levels** for the failed Board are correct, and repeat the check.
- If the check still fails, **restart the Control Software**. Loading the Firmware can be skipped.
- If the check still fails, there may be a **hardware issue**. Contact Support. Include the latest logfile (in Folder C:\)

- 1. Check GCoMo Power Levels
- 2. Phasecheck
- 3. Check PPS Synchronization
- 4. Check Time Synchronization
- 5. Check Sampler Statistics
- 6. Check BBC Statistics

• Command: pps_delay

- Checks the delay between internal (generated) and external PPS
- Should be **below 100ns** for each used IF.
- **Restart Control Software** if Value too high. Loading Firmware can be skipped.
- **Careful**: If the external PPS comes from the GPS, there may be a drift between internal and external PPS over time.

- 1. Check GCoMo Power Levels
- 2. Phasecheck
- 3. Check PPS Synchronization
- 4. Check Time Synchronization
- 5. Check Sampler Statistics
- 6. Check BBC Statistics

• Command: core3h=board_nr, time

- board_nr from 1-8
- Check that the timestamp is correct.
 1-2 sec off is ok due to serial communication delay.
- If not, check GPS connection and restart Control Software. Loading Firmware can be skipped.

- 1. Check GCoMo Power Levels
- 2. Phasecheck
- 3. Check PPS Synchronization
- 4. Check Time Synchronization
- 5. Check Sampler Statistics
- 6. Check BBC Statistics

Command: core3hstats=board_nr

- "Core3H[] Power" The four values should be less than 1-2% off from each other.
 If not, a recalibration of the gain might be required.
- Example: Core3H[1] Power: Sampler 0: 62547223
 Sampler 1: 62732176
 Sampler 2: 62415746
 Sampler 3: 61841107
- "Core3H[] Bstat." 50%/50% distribution between first two and last two values for each sampler. If not, a recalibration of the offset might be required.
- Example: Sampler 0: 11: 54 0.35%
 10: 7763 49.68%
 01: 7767 49.71%
 00: 38 0.24%

- 1. Check GCoMo Power Levels
- 2. Phasecheck
- 3. Check PPS Synchronization
- 4. Check Time Synchronization
- 5. Check Sampler Statistics
- 6. Check BBC Statistics

• Command: dbbcXX

- Replace XX with the BBCs number (01-128)
- Example response: dbbc001/ 300.00000,a,128,1,agc,26,26,15244,15004,0,0;
- Check that **frequency** and **bandwidth** are correct
- Power levels should be around 15k, gain within range (0-255), but this is a recommendation, not a strict requirement

Calibration

Calibration

- When do you need to recalibrate?
 - Gain: Core3H-Power is systematically off during Post-Startup System Check
 - **Offset**: Core3H-Bstat is systematically off during Post-Startup System Check
 - **Delay**: Always recalibrate if you needed to recalibrate gain or offset.
 - Check for **RFI** in the band first, this can in some cases lead to deviation in gain and offset.
- Only perform calibration if you have a clean 4GHz Signal source:
 - 4 GHz bandwidth clean noise (from noise generator or receiver)
 - Power must be stable during the calibration process!!!
 - Enough Power (32k GCoMo Power Level)
 - No RFI in the band!!!

Offset-Calibration

- 1. Increase the attenuation of the corresponding GCoMo so that the power level is between 5 and 10k:
 - dbbcifa=2,40
 - dbbcifa/ 2,40,man,1,**5557**,32000;
- 2. Issue the Command: cal_offset=board_nr[1-8]
 - Example: cal_offset=1
 - The result is shown in the Command windows of the Control Software, not the Client: Sampler[0], best offset 136 offset=1,0,136 Sampler[1], best offset 124 offset=1,1,124 Sampler[2], best offset 120 offset=1,2,120 Sampler[3], best offset 102 offset=1,3,102
- 3. Change the values in the **config_adb3l.txt** according to the result of the calibration
 - offset=1,0,136

 offset=1,1,124
 offset=1,2,120
 offset=1,3,102
- 4. Reset the attenuation in the GCoMo to agc to reach power level of 32k, restarting the control software is not necessary
 - dbbcifa=2,agc

Gain-Calibration

- 1. Make sure the power level of the GCoMo is **around 32k**, **manual mode** is recommended:
 - dbbcifa=2,man
 - dbbcifa/ 2,4,man,1,**32443**,32000;
- 2. Issue the Command: cal_gain=board_nr[1-8]
 - Example: cal_gain=1
 - The result is shown in the Command windows of the Control Software, not the Client: Sampler[0], best gain 129
 Sampler[1], best gain 97
 Sampler[2], best gain 128
 Sampler[3], best gain 159
- 3. Change the values in the **config_adb3l.txt** according to the result of the calibration
 - gain=1,0,129 gain=1,1,97 gain=1,2,128 gain=1,3,159
- 4. **Reset the attenuation** in the GCoMo to agc, restarting the control software is not necessary.
 - dbbcifa=2,agc

Delay-Calibration

- 1. Make sure the power level of the GCoMo is **around 32k**, **manual mode** is recommended:
 - dbbcifa=2,man
 - dbbcifa/ 2,4,man,1,**32443**,32000;
- 2. Issue the Command: cal_delay=board_nr[1-8]
 - Example: cal_delay=1
 - The result is shown in the Command windows of the Control Software, not the Client 0->1, Best difference = 194 with corr_value = 244646768 1->2, Best difference = 142 with corr_value = 244000252 2->3, Best difference = 214 with corr_value = 243237046 Sampler[0]->delay=247 delay=1,0,247 Sampler[1]->delay=441 delay=1,1,441 Sampler[2]->delay=583 delay=1,2,583 Sampler[3]->delay=797 delay=1,3,797
- 3. Change the values in the config_adb3l.txt according to the result of the calibration
 - delay=1,0,247 delay=1,1,441 delay=1.2.583 delay=1.3.797
- 4. **Reset the attenuation** in the GCoMo to agc, restarting the control software is not necessary.
 - dbbcifa=2,agc

Thank you, any questions?